timm
/

Image Classification
timm
PyTorch
Safetensors
File size: 18,420 Bytes
3e37766
db74afb
 
3e37766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
---
license: apache-2.0
library_name: timm
tags:
- image-classification
- timm
---
# Model card for convnext_base.clip_laion2b_augreg_ft_in12k

A ConvNeXt image-text trained feature representation model. CLIP image tower weights pretrained in [OpenCLIP](https://github.com/mlfoundations/open_clip) on LAION by Ross Wightman.

Please see related OpenCLIP model cards for more details on pretrain:
* https://huggingface.co/laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup
* https://huggingface.co/laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg
* https://huggingface.co/laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg
* https://huggingface.co/laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K


## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
  - Params (M): 99.7
  - GMACs: 20.1
  - Activations (M): 37.6
  - Image size: 256 x 256
- **Papers:**
  - LAION-5B: An open large-scale dataset for training next generation image-text models: https://arxiv.org/abs/2210.08402
  - A ConvNet for the 2020s: https://arxiv.org/abs/2201.03545
  - Learning Transferable Visual Models From Natural Language Supervision: https://arxiv.org/abs/2103.00020
- **Original:** https://github.com/mlfoundations/open_clip
- **Pretrain Dataset:** LAION-2B

## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('convnext_base.clip_laion2b_augreg_ft_in12k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```

### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'convnext_base.clip_laion2b_augreg_ft_in12k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 128, 64, 64])
    #  torch.Size([1, 256, 32, 32])
    #  torch.Size([1, 512, 16, 16])
    #  torch.Size([1, 1024, 8, 8])

    print(o.shape)
```

### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'convnext_base.clip_laion2b_augreg_ft_in12k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1024, 8, 8) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```

## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).

All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP.

| model                                                                                                                        |top1  |top5  |img_size|param_count|gmacs |macts |samples_per_sec|batch_size|
|------------------------------------------------------------------------------------------------------------------------------|------|------|--------|-----------|------|------|---------------|----------|
| [convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)               |88.848|98.742|512     |660.29     |600.81|413.07|28.58          |48        |
| [convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)               |88.668|98.738|384     |660.29     |337.96|232.35|50.56          |64        |
| [convnext_xxlarge.clip_laion2b_soup_ft_in1k](https://huggingface.co/timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k)         |88.612|98.704|256     |846.47     |198.09|124.45|122.45         |256       |
| [convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384)             |88.312|98.578|384     |200.13     |101.11|126.74|196.84         |256       |
| [convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)             |88.196|98.532|384     |197.96     |101.1 |126.74|128.94         |128       |
| [convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320)             |87.968|98.47 |320     |200.13     |70.21 |88.02 |283.42         |256       |
| [convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)                     |87.75 |98.556|384     |350.2      |179.2 |168.99|124.85         |192       |
| [convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)               |87.646|98.422|384     |88.72      |45.21 |84.49 |209.51         |256       |
| [convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)                       |87.476|98.382|384     |197.77     |101.1 |126.74|194.66         |256       |
| [convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k) |87.344|98.218|256     |200.13     |44.94 |56.33 |438.08         |256       |
| [convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)                     |87.26 |98.248|224     |197.96     |34.4  |43.13 |376.84         |256       |
| [convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384)                   |87.138|98.212|384     |88.59      |45.21 |84.49 |365.47         |256       |
| [convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)                             |87.002|98.208|224     |350.2      |60.98 |57.5  |368.01         |256       |
| [convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)                         |86.796|98.264|384     |88.59      |45.21 |84.49 |366.54         |256       |
| [convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)                       |86.74 |98.022|224     |88.72      |15.38 |28.75 |624.23         |256       |
| [convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)                               |86.636|98.028|224     |197.77     |34.4  |43.13 |581.43         |256       |
| [convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)     |86.504|97.97 |384     |88.59      |45.21 |84.49 |368.14         |256       |
| [convnext_base.clip_laion2b_augreg_ft_in12k_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k)                           |86.344|97.97 |256     |88.59      |20.09 |37.55 |816.14         |256       |
| [convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)                                   |86.256|97.75 |224     |660.29     |115.0 |79.07 |154.72         |256       |
| [convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)                             |86.182|97.92 |384     |50.22      |25.58 |63.37 |516.19         |256       |
| [convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)           |86.154|97.68 |256     |88.59      |20.09 |37.55 |819.86         |256       |
| [convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)                                 |85.822|97.866|224     |88.59      |15.38 |28.75 |1037.66        |256       |
| [convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)                       |85.778|97.886|384     |50.22      |25.58 |63.37 |518.95         |256       |
| [convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)                                 |85.742|97.584|224     |197.96     |34.4  |43.13 |375.23         |256       |
| [convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)                                     |85.174|97.506|224     |50.22      |8.71  |21.56 |1474.31        |256       |
| [convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)                               |85.118|97.608|384     |28.59      |13.14 |39.48 |856.76         |256       |
| [convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)               |85.112|97.63 |384     |28.64      |13.14 |39.48 |491.32         |256       |
| [convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)                                   |84.874|97.09 |224     |88.72      |15.38 |28.75 |625.33         |256       |
| [convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)                               |84.562|97.394|224     |50.22      |8.71  |21.56 |1478.29        |256       |
| [convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)                                                 |84.282|96.892|224     |197.77     |34.4  |43.13 |584.28         |256       |
| [convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)                                       |84.186|97.124|224     |28.59      |4.47  |13.44 |2433.7         |256       |
| [convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)                         |84.084|97.14 |384     |28.59      |13.14 |39.48 |862.95         |256       |
| [convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)                       |83.894|96.964|224     |28.64      |4.47  |13.44 |1452.72        |256       |
| [convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)                                                   |83.82 |96.746|224     |88.59      |15.38 |28.75 |1054.0         |256       |
| [convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)               |83.37 |96.742|384     |15.62      |7.22  |24.61 |801.72         |256       |
| [convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)                                                 |83.142|96.434|224     |50.22      |8.71  |21.56 |1464.0         |256       |
| [convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)                                   |82.92 |96.284|224     |28.64      |4.47  |13.44 |1425.62        |256       |
| [convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)                                 |82.898|96.616|224     |28.59      |4.47  |13.44 |2480.88        |256       |
| [convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)                                       |82.282|96.344|224     |15.59      |2.46  |8.37  |3926.52        |256       |
| [convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)                                         |82.216|95.852|224     |28.59      |4.47  |13.44 |2529.75        |256       |
| [convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)                                                   |82.066|95.854|224     |28.59      |4.47  |13.44 |2346.26        |256       |
| [convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)                       |82.03 |96.166|224     |15.62      |2.46  |8.37  |2300.18        |256       |
| [convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)                                   |81.83 |95.738|224     |15.62      |2.46  |8.37  |2321.48        |256       |
| [convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)                                         |80.866|95.246|224     |15.65      |2.65  |9.38  |3523.85        |256       |
| [convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)                                                 |80.768|95.334|224     |15.59      |2.46  |8.37  |3915.58        |256       |
| [convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)                                   |80.304|95.072|224     |9.07       |1.37  |6.1   |3274.57        |256       |
| [convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)                                                   |79.526|94.558|224     |9.05       |1.37  |6.1   |5686.88        |256       |
| [convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)                                           |79.522|94.692|224     |9.06       |1.43  |6.5   |5422.46        |256       |
| [convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)                                 |78.488|93.98 |224     |5.23       |0.79  |4.57  |4264.2         |256       |
| [convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)                                         |77.86 |93.83 |224     |5.23       |0.82  |4.87  |6910.6         |256       |
| [convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)                                                 |77.454|93.68 |224     |5.22       |0.79  |4.57  |7189.92        |256       |
| [convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)                                   |76.664|93.044|224     |3.71       |0.55  |3.81  |4728.91        |256       |
| [convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)                                           |75.88 |92.846|224     |3.7        |0.58  |4.11  |7963.16        |256       |
| [convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)                                                   |75.664|92.9  |224     |3.7        |0.55  |3.81  |8439.22        |256       |

## Citation
```bibtex
@software{ilharco_gabriel_2021_5143773,
  author       = {Ilharco, Gabriel and
                  Wortsman, Mitchell and
                  Wightman, Ross and
                  Gordon, Cade and
                  Carlini, Nicholas and
                  Taori, Rohan and
                  Dave, Achal and
                  Shankar, Vaishaal and
                  Namkoong, Hongseok and
                  Miller, John and
                  Hajishirzi, Hannaneh and
                  Farhadi, Ali and
                  Schmidt, Ludwig},
  title        = {OpenCLIP},
  month        = jul,
  year         = 2021,
  note         = {If you use this software, please cite it as below.},
  publisher    = {Zenodo},
  version      = {0.1},
  doi          = {10.5281/zenodo.5143773},
  url          = {https://doi.org/10.5281/zenodo.5143773}
}
```
```bibtex
@inproceedings{schuhmann2022laionb,
  title={{LAION}-5B: An open large-scale dataset for training next generation image-text models},
  author={Christoph Schuhmann and
          Romain Beaumont and
          Richard Vencu and
          Cade W Gordon and
          Ross Wightman and
          Mehdi Cherti and
          Theo Coombes and
          Aarush Katta and
          Clayton Mullis and
          Mitchell Wortsman and
          Patrick Schramowski and
          Srivatsa R Kundurthy and
          Katherine Crowson and
          Ludwig Schmidt and
          Robert Kaczmarczyk and
          Jenia Jitsev},
  booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
  year={2022},
  url={https://openreview.net/forum?id=M3Y74vmsMcY}
}
```
```bibtex
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```
```bibtex
@inproceedings{Radford2021LearningTV,
  title={Learning Transferable Visual Models From Natural Language Supervision},
  author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
  booktitle={ICML}, 
  year={2021}
}
```
```bibtex
@article{liu2022convnet,
  author  = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
  title   = {A ConvNet for the 2020s},
  journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year    = {2022},
}
```