timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman HF staff commited on
Commit
3e37766
1 Parent(s): e9da44d
Files changed (4) hide show
  1. README.md +260 -0
  2. config.json +35 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_tag: timm
6
+ license: apache-2.0
7
+ ---
8
+ # Model card for convnext_base.clip_laion2b_augreg_ft_in12k
9
+
10
+ A ConvNeXt image-text trained feature representation model. CLIP image tower weights pretrained in [OpenCLIP](https://github.com/mlfoundations/open_clip) on LAION by Ross Wightman.
11
+
12
+ Please see related OpenCLIP model cards for more details on pretrain:
13
+ * https://huggingface.co/laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup
14
+ * https://huggingface.co/laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg
15
+ * https://huggingface.co/laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg
16
+ * https://huggingface.co/laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K
17
+
18
+
19
+ ## Model Details
20
+ - **Model Type:** Image classification / feature backbone
21
+ - **Model Stats:**
22
+ - Params (M): 99.7
23
+ - GMACs: 20.1
24
+ - Activations (M): 37.6
25
+ - Image size: 256 x 256
26
+ - **Papers:**
27
+ - LAION-5B: An open large-scale dataset for training next generation image-text models: https://arxiv.org/abs/2210.08402
28
+ - A ConvNet for the 2020s: https://arxiv.org/abs/2201.03545
29
+ - Learning Transferable Visual Models From Natural Language Supervision: https://arxiv.org/abs/2103.00020
30
+ - **Original:** https://github.com/mlfoundations/open_clip
31
+ - **Pretrain Dataset:** LAION-2B
32
+
33
+ ## Model Usage
34
+ ### Image Classification
35
+ ```python
36
+ from urllib.request import urlopen
37
+ from PIL import Image
38
+ import timm
39
+
40
+ img = Image.open(urlopen(
41
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
42
+ ))
43
+
44
+ model = timm.create_model('convnext_base.clip_laion2b_augreg_ft_in12k', pretrained=True)
45
+ model = model.eval()
46
+
47
+ # get model specific transforms (normalization, resize)
48
+ data_config = timm.data.resolve_model_data_config(model)
49
+ transforms = timm.data.create_transform(**data_config, is_training=False)
50
+
51
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
52
+
53
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
54
+ ```
55
+
56
+ ### Feature Map Extraction
57
+ ```python
58
+ from urllib.request import urlopen
59
+ from PIL import Image
60
+ import timm
61
+
62
+ img = Image.open(urlopen(
63
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
64
+ ))
65
+
66
+ model = timm.create_model(
67
+ 'convnext_base.clip_laion2b_augreg_ft_in12k',
68
+ pretrained=True,
69
+ features_only=True,
70
+ )
71
+ model = model.eval()
72
+
73
+ # get model specific transforms (normalization, resize)
74
+ data_config = timm.data.resolve_model_data_config(model)
75
+ transforms = timm.data.create_transform(**data_config, is_training=False)
76
+
77
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
78
+
79
+ for o in output:
80
+ # print shape of each feature map in output
81
+ # e.g.:
82
+ # torch.Size([1, 128, 64, 64])
83
+ # torch.Size([1, 256, 32, 32])
84
+ # torch.Size([1, 512, 16, 16])
85
+ # torch.Size([1, 1024, 8, 8])
86
+
87
+ print(o.shape)
88
+ ```
89
+
90
+ ### Image Embeddings
91
+ ```python
92
+ from urllib.request import urlopen
93
+ from PIL import Image
94
+ import timm
95
+
96
+ img = Image.open(urlopen(
97
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
98
+ ))
99
+
100
+ model = timm.create_model(
101
+ 'convnext_base.clip_laion2b_augreg_ft_in12k',
102
+ pretrained=True,
103
+ num_classes=0, # remove classifier nn.Linear
104
+ )
105
+ model = model.eval()
106
+
107
+ # get model specific transforms (normalization, resize)
108
+ data_config = timm.data.resolve_model_data_config(model)
109
+ transforms = timm.data.create_transform(**data_config, is_training=False)
110
+
111
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
112
+
113
+ # or equivalently (without needing to set num_classes=0)
114
+
115
+ output = model.forward_features(transforms(img).unsqueeze(0))
116
+ # output is unpooled, a (1, 1024, 8, 8) shaped tensor
117
+
118
+ output = model.forward_head(output, pre_logits=True)
119
+ # output is a (1, num_features) shaped tensor
120
+ ```
121
+
122
+ ## Model Comparison
123
+ Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
124
+
125
+ All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP.
126
+
127
+ | model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size|
128
+ |------------------------------------------------------------------------------------------------------------------------------|------|------|--------|-----------|------|------|---------------|----------|
129
+ | [convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512) |88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 |
130
+ | [convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384) |88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 |
131
+ | [convnext_xxlarge.clip_laion2b_soup_ft_in1k](https://huggingface.co/timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k) |88.612|98.704|256 |846.47 |198.09|124.45|122.45 |256 |
132
+ | [convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384) |88.312|98.578|384 |200.13 |101.11|126.74|196.84 |256 |
133
+ | [convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384) |88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 |
134
+ | [convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320) |87.968|98.47 |320 |200.13 |70.21 |88.02 |283.42 |256 |
135
+ | [convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384) |87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 |
136
+ | [convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384) |87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 |
137
+ | [convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384) |87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 |
138
+ | [convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k) |87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 |
139
+ | [convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k) |87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 |
140
+ | [convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384) |87.138|98.212|384 |88.59 |45.21 |84.49 |365.47 |256 |
141
+ | [convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k) |87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 |
142
+ | [convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384) |86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 |
143
+ | [convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k) |86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 |
144
+ | [convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k) |86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 |
145
+ | [convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384) |86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 |
146
+ | [convnext_base.clip_laion2b_augreg_ft_in12k_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k) |86.344|97.97 |256 |88.59 |20.09 |37.55 |816.14 |256 |
147
+ | [convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k) |86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 |
148
+ | [convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384) |86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 |
149
+ | [convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k) |86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 |
150
+ | [convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k) |85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 |
151
+ | [convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384) |85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 |
152
+ | [convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k) |85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 |
153
+ | [convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k) |85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 |
154
+ | [convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384) |85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 |
155
+ | [convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384) |85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 |
156
+ | [convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k) |84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 |
157
+ | [convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k) |84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 |
158
+ | [convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k) |84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 |
159
+ | [convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k) |84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 |
160
+ | [convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384) |84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 |
161
+ | [convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k) |83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 |
162
+ | [convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k) |83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 |
163
+ | [convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384) |83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 |
164
+ | [convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k) |83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 |
165
+ | [convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k) |82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 |
166
+ | [convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k) |82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 |
167
+ | [convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k) |82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 |
168
+ | [convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k) |82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 |
169
+ | [convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k) |82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 |
170
+ | [convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k) |82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 |
171
+ | [convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k) |81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 |
172
+ | [convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k) |80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 |
173
+ | [convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k) |80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 |
174
+ | [convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k) |80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 |
175
+ | [convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k) |79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 |
176
+ | [convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k) |79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 |
177
+ | [convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k) |78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 |
178
+ | [convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k) |77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 |
179
+ | [convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k) |77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 |
180
+ | [convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k) |76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 |
181
+ | [convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k) |75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 |
182
+ | [convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k) |75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 |
183
+
184
+ ## Citation
185
+ ```bibtex
186
+ @software{ilharco_gabriel_2021_5143773,
187
+ author = {Ilharco, Gabriel and
188
+ Wortsman, Mitchell and
189
+ Wightman, Ross and
190
+ Gordon, Cade and
191
+ Carlini, Nicholas and
192
+ Taori, Rohan and
193
+ Dave, Achal and
194
+ Shankar, Vaishaal and
195
+ Namkoong, Hongseok and
196
+ Miller, John and
197
+ Hajishirzi, Hannaneh and
198
+ Farhadi, Ali and
199
+ Schmidt, Ludwig},
200
+ title = {OpenCLIP},
201
+ month = jul,
202
+ year = 2021,
203
+ note = {If you use this software, please cite it as below.},
204
+ publisher = {Zenodo},
205
+ version = {0.1},
206
+ doi = {10.5281/zenodo.5143773},
207
+ url = {https://doi.org/10.5281/zenodo.5143773}
208
+ }
209
+ ```
210
+ ```bibtex
211
+ @inproceedings{schuhmann2022laionb,
212
+ title={{LAION}-5B: An open large-scale dataset for training next generation image-text models},
213
+ author={Christoph Schuhmann and
214
+ Romain Beaumont and
215
+ Richard Vencu and
216
+ Cade W Gordon and
217
+ Ross Wightman and
218
+ Mehdi Cherti and
219
+ Theo Coombes and
220
+ Aarush Katta and
221
+ Clayton Mullis and
222
+ Mitchell Wortsman and
223
+ Patrick Schramowski and
224
+ Srivatsa R Kundurthy and
225
+ Katherine Crowson and
226
+ Ludwig Schmidt and
227
+ Robert Kaczmarczyk and
228
+ Jenia Jitsev},
229
+ booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
230
+ year={2022},
231
+ url={https://openreview.net/forum?id=M3Y74vmsMcY}
232
+ }
233
+ ```
234
+ ```bibtex
235
+ @misc{rw2019timm,
236
+ author = {Ross Wightman},
237
+ title = {PyTorch Image Models},
238
+ year = {2019},
239
+ publisher = {GitHub},
240
+ journal = {GitHub repository},
241
+ doi = {10.5281/zenodo.4414861},
242
+ howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
243
+ }
244
+ ```
245
+ ```bibtex
246
+ @inproceedings{Radford2021LearningTV,
247
+ title={Learning Transferable Visual Models From Natural Language Supervision},
248
+ author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
249
+ booktitle={ICML},
250
+ year={2021}
251
+ }
252
+ ```
253
+ ```bibtex
254
+ @article{liu2022convnet,
255
+ author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
256
+ title = {A ConvNet for the 2020s},
257
+ journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
258
+ year = {2022},
259
+ }
260
+ ```
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "convnext_base",
3
+ "num_classes": 11821,
4
+ "num_features": 1024,
5
+ "pretrained_cfg": {
6
+ "tag": "clip_laion2b_augreg_ft_in12k",
7
+ "custom_load": false,
8
+ "input_size": [
9
+ 3,
10
+ 256,
11
+ 256
12
+ ],
13
+ "fixed_input_size": false,
14
+ "interpolation": "bicubic",
15
+ "crop_pct": 1.0,
16
+ "crop_mode": "center",
17
+ "mean": [
18
+ 0.48145466,
19
+ 0.4578275,
20
+ 0.40821073
21
+ ],
22
+ "std": [
23
+ 0.26862954,
24
+ 0.26130258,
25
+ 0.27577711
26
+ ],
27
+ "num_classes": 11821,
28
+ "pool_size": [
29
+ 8,
30
+ 8
31
+ ],
32
+ "first_conv": "stem.0",
33
+ "classifier": "head.fc"
34
+ }
35
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4007a9a52724f2eea3cca20122a0c8ba1a77e602cce31a7432dd4955c2d98aaa
3
+ size 398766604
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17548e288d5b1e6c2d3ee883b5738f79d0923f5b9e9818971a1280cf2ccccc13
3
+ size 398861421