Model card for cait_m48_448.fb_dist_in1k
A CaiT (Class-Attention in Image Transformers) image classification model. Pretrained on ImageNet-1k with distillation by paper authors.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 356.5
- GMACs: 329.4
- Activations (M): 1708.2
- Image size: 448 x 448
- Papers:
- Going deeper with Image Transformers: https://arxiv.org/abs/2103.17239
- Dataset: ImageNet-1k
- Original: https://github.com/facebookresearch/deit
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('cait_m48_448.fb_dist_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'cait_m48_448.fb_dist_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 785, 768) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Citation
@InProceedings{Touvron_2021_ICCV,
author = {Touvron, Hugo and Cord, Matthieu and Sablayrolles, Alexandre and Synnaeve, Gabriel and J'egou, Herv'e},
title = {Going Deeper With Image Transformers},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {32-42}
}
- Downloads last month
- 2,840
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.