File size: 2,105 Bytes
f64c595
 
e5eb483
 
 
 
 
 
7505fde
f64c595
e5eb483
 
 
 
 
 
7505fde
e5eb483
b05e6c8
9036517
e5eb483
1f6c79b
 
3f8d9a2
 
ab53a01
 
 
 
 
 
 
e5eb483
 
9036517
b05e6c8
 
e5eb483
 
 
1fc8f3f
b05e6c8
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
license: apache-2.0
tags:
- time series
- forecasting
- pretrained models
- foundation models
- time series foundation models
- time-series
---
# Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting

![lag-llama-architecture](images/lagllama.webp)

Lag-Llama is the <b>first open-source foundation model for time series forecasting</b>!

[[Tweet Thread](https://twitter.com/arjunashok37/status/1755261111233114165)] [[Model Weights](https://huggingface.co/time-series-foundation-models/Lag-Llama)] [[Colab Demo on Zero-Shot Forecasting](https://colab.research.google.com/drive/13HHKYL_HflHBKxDWycXgIUAHSeHRR5eo?usp=sharing)] [[GitHub](https://github.com/time-series-foundation-models/lag-llama)] [[Paper](https://arxiv.org/abs/2310.08278)]

____
This HuggingFace model houses the <a href="https://huggingface.co/time-series-foundation-models/Lag-Llama/blob/main/lag-llama.ckpt" target="_blank">pretrained checkpoint</a> of Lag-Llama.

____

* **Coming Next**: Fine-tuning scripts with examples on real-world datasets and best practices in using Lag-Llama!🚀  

<b>Updates</b>:

* **17-Feb-2024**: We have released a new updated [Colab Demo](https://colab.research.google.com/drive/1XxrLW9VGPlZDw3efTvUi0hQimgJOwQG6?usp=sharing) for zero-shot forecasting that shows how one can load time series of different formats.
* **7-Feb-2024**: We released Lag-Llama, with open-source model checkpoints and a Colab Demo for zero-shot forecasting.

____

<b>Current Features:</b>

💫 <b>Zero-shot forecasting</b> on a dataset of <b>any frequency</b> for <b>any prediction length</b>, using the <a href="https://colab.research.google.com/drive/13HHKYL_HflHBKxDWycXgIUAHSeHRR5eo?usp=sharing" target="_blank">Colab Demo.</a><br/>

____

Coming Soon:

⭐ An <b>online gradio demo</b> where you can upload time series and get zero-shot predictions and perform finetuning.

⭐ Features for <b>finetuning</b> the foundation model

⭐ Features for <b>pretraining</b> Lag-Llama on your own large-scale data

⭐ Scripts to <b>reproduce</b> all results in the paper.


____

Stay Tuned!🦙