Text Generation
Transformers
Safetensors
English
falcon_mamba
Eval Results
Inference Endpoints
File size: 8,870 Bytes
f91f64e
7191604
 
b713f68
3f34165
9492b8c
f91f64e
 
 
00003eb
3f34165
f91f64e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f26abf
 
 
 
00003eb
f91f64e
9f26abf
 
 
f91f64e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00003eb
 
f91f64e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00003eb
 
f91f64e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00003eb
 
f91f64e
 
 
 
 
 
 
 
 
 
f1824b9
f91f64e
 
 
 
 
 
f1824b9
f91f64e
00003eb
 
f91f64e
 
 
 
 
 
 
 
 
 
 
 
9f26abf
f91f64e
f1824b9
3f34165
39afd30
 
 
 
 
8a4e871
 
39afd30
 
f91f64e
 
00003eb
9f26abf
 
 
 
 
 
 
 
 
34e00ff
9f26abf
f91f64e
9f26abf
 
 
 
 
f91f64e
 
 
e3d99da
0e0f166
e3d99da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91f64e
9f26abf
 
 
 
 
 
00003eb
9f26abf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00003eb
9f26abf
 
 
00003eb
9f26abf
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
datasets:
- tiiuae/falcon-refinedweb
- HuggingFaceFW/fineweb-edu
language:
- en
license: apache-2.0
---

# Model Card for Falcon-Mamba-7B



#  Table of Contents

0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Training Details](#training-details)
4. [Evaluation](#evaluation)


# TL;DR

# Model Details

## Model Description

- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
- **Model type:** Causal decoder-only
- **Architecture:** Mamba
- **Language(s) (NLP):** Mainly English
- **License:** TII Falcon-Mamba License 2.0

### Model Source

- **Paper:** *coming soon*.

# Usage

Find below some example scripts on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source):

## Using the Pytorch model

### Running the model on a CPU

<details>
<summary> Click to expand </summary>

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b")

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

### Running the model on a GPU

<details>
<summary> Click to expand </summary>

```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", device_map="auto")

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

### Running the model on a GPU using different precisions

#### FP16

<details>
<summary> Click to expand </summary>

```python
# pip install accelerate
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", device_map="auto", torch_dtype=torch.float16)

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

#### 4-bit

<details>
<summary> Click to expand </summary>

```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True))

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>



# Training Details

## Training Data

Falcon-Mamba has been trained with ~ 6,000 GT mainly coming from [Refined-Web](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a large volume web-only dataset filtered and deduplicated.
Similar to the others [Falcon](https://huggingface.co/tiiuae/falcon-11B) suite models, Falcon-Mamba has been trained leveraging a multi-stage training strategy to increase the context-length training from 2,048 up to 8,192. 
Note that at inference the context-length is not relevant as the Mamba architecture has no limit on long range dependency.
At the last training stage, small portion of high-quality curated data was used to further enhance performance.

Overall, the data sources included RefinedWeb-English, high quality technical data, code data and conversational data extracted from public sources.
In particular, we used samples coming from [Fineweb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu).

The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7B)/[11B](https://huggingface.co/tiiuae/falcon-11B) tokenizer.

## Training Procedure
Falcon-Mamba-7B was trained on 256 H100 80GB GPUs for the majority of the training, using a 3D parallelism strategy (TP=1, PP=1, DP=256) combined with ZeRO.

#### Training Hyperparameters

| **Hyperparameter** | **Value**  | **Comment**                               |
|--------------------|------------|-------------------------------------------|
| Precision          | `bfloat16` |                                           |
| Optimizer          | AdamW      |                                           |
| Max learning rate      | 6.4e-4       | Following a WSD (warmup-stable-decay) learning rate schedule |
| Weight decay       | 1e-1       |                                           |
| Batch size         | 2048        |                         |


The model was trained AdamW optimizer, WSD (warmup-stable-decay) learning rate schedule, and a batch size rampup from \\(b_{\mathrm{min}}=128\\) to \\(b_{\mathrm{max}}=2048\\) during first 50 GT of training. In the stable phase we used maximal learning rate \\(\eta_{\mathrm{max}}=6.4 \times 10^{-4}\\), and decayed it to the minimal value \\(\eta_{\mathrm{min}}=\frac{\eta_{\mathrm{max}}}{256}\\) with exponential schedule over 500 GT. Also, we applied *BatchScaling* during the rampup — rescaling learning rate \\(\eta\\) so that the Adam noise temperature \\(T_{\mathrm{noise}}\equiv\frac{\eta}{\sqrt{b}}\\) is kept constant.  

#### Speeds, Sizes, Times

The model training took roughly two months. 

# Evaluation

## Benchmarks

We evaluate our model on all benchmarks of the leaderboard's version 2 using the `lm-evaluation-harness` package, and we evaluate it on the benchmarks of version 1 using `lighteval`.

| model_name                   | IFEval | BBH   | MATH LvL5 | GPQA  | MUSR  | MMLU-PRO | **Average L2** | ARC   | HellaSwag | MMLU  | Winogrande | TruthfulQA | GSM8K | **Average L1** |
|------------------------------|--------|-------|-----------|-------|-------|----------|----------------|-------|-----------|-------|------------|------------|-------|----------------|
| `meta-llama/Meta-Llama-3-8B` | 14.55  | 24.50 | 3.25      | 7.38  | 6.24  | 24.55    | 13.41          | 60.24 | 82.23     | 66.70 | 78.45      | 42.93      | 45.19 | 62.62          |
| `tiiuae/falcon2-11B`         | 32.61  | 21.94 | 2.34      | 2.8   | 7.53  | 15.44    | 13.78          | 59.73 | 82.91     | 58.37 | 78.30      | 52.56      | 53.83 | **64.28**      |
| `mistralai/Mistral-7B-v0.1`  | 23.86  | 22.02 | 2.49      | 5.59  | 10.68 | 22.36    | 14.50          | 59.98 | 83.31     | 64.16 | 78.37      | 42.15      | 37.83 | 60.97          |
| `Zyphra/Zamba-7B-v1`         | -      | -     | -         | -     | -     | -        | -              | 46.48 | 80.24     | 57.72 | 76.4       | -          | -     | -              |
| Ours                         | 32.16  | 21.07 | 4.08      | 10.18 | 6.97  | 13.43    | **14.65**      | 61.69 | 80.63     | 61.05 | 74.03      | 53.60      | 51.86 | 63.81          |

## Throughput

This model can achieve comparable throughput and performance compared to other transformer based models that use optimized kernels such as Flash Attention 2. Make sure to install the optimized Mamba kernels with the following commands:

```bash
pip install "causal-conv1d>=1.4.0" mamba-ssm
```

Refer to our technical report for more details about performance evaluation.



# Technical Specifications 

## Model Architecture and Objective

Falcon-Mamba-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).

The model is based on the Mamba architecture ([Gu et al., 2023](https://arxiv.org/abs/2312.00752)).

| **Hyperparameter** | **Value** | **Comment**                            |
|--------------------|-----------|----------------------------------------|
| Layers             | 64        |                                        |
| `d_model`          | 4096      |                                        |
| `d_state`         | 16       |   The SSM state dimension                                     |
| Vocabulary         | 65024     |                                        |
| Sequence length    | 8192      | During stages 4 and LR Decay stage                  |

## Compute Infrastructure

### Hardware

Falcon-Mamba-7B was trained on AWS SageMaker, using on average 256 H100 80GB GPUs in 32 p5 instances. 

### Software

Falcon-Mamba-7B was trained an internal distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO, high-performance Triton kernels.

# Citation

*Paper coming soon* 😊.