Update README.md
Browse files
README.md
CHANGED
@@ -46,7 +46,7 @@ Find below some example scripts on how to use the model in `transformers` (Make
|
|
46 |
|
47 |
## Using the Pytorch model
|
48 |
|
49 |
-
|
50 |
|
51 |
<details>
|
52 |
<summary> Click to expand </summary>
|
@@ -54,8 +54,8 @@ Find below some example scripts on how to use the model in `transformers` (Make
|
|
54 |
```python
|
55 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
56 |
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
|
58 |
-
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b")
|
59 |
|
60 |
input_text = "Question: How many hours in one day? Answer: "
|
61 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
@@ -66,89 +66,21 @@ print(tokenizer.decode(outputs[0]))
|
|
66 |
|
67 |
</details>
|
68 |
|
69 |
-
|
70 |
|
71 |
-
<details>
|
72 |
-
<summary> Click to expand </summary>
|
73 |
-
|
74 |
-
```python
|
75 |
-
# pip install accelerate
|
76 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
77 |
-
|
78 |
-
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
|
79 |
-
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", device_map="auto")
|
80 |
-
|
81 |
-
input_text = "Question: How many hours in one day? Answer: "
|
82 |
-
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
83 |
-
|
84 |
-
outputs = model.generate(input_ids)
|
85 |
-
print(tokenizer.decode(outputs[0]))
|
86 |
-
```
|
87 |
-
|
88 |
-
</details>
|
89 |
-
|
90 |
-
### Running the model on a GPU using `torch.compile`
|
91 |
|
92 |
<details>
|
93 |
<summary> Click to expand </summary>
|
94 |
|
95 |
```python
|
96 |
-
import torch
|
97 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
98 |
|
99 |
-
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
|
100 |
-
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b"
|
101 |
-
|
102 |
-
model = torch.compile(model)
|
103 |
|
104 |
input_text = "Question: How many hours in one day? Answer: "
|
105 |
-
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
106 |
-
|
107 |
-
outputs = model.generate(input_ids)
|
108 |
-
print(tokenizer.decode(outputs[0]))
|
109 |
-
```
|
110 |
-
|
111 |
-
</details>
|
112 |
-
|
113 |
-
|
114 |
-
### Running the model on a GPU using different precisions
|
115 |
-
|
116 |
-
#### FP16
|
117 |
-
|
118 |
-
<details>
|
119 |
-
<summary> Click to expand </summary>
|
120 |
-
|
121 |
-
```python
|
122 |
-
# pip install accelerate
|
123 |
-
import torch
|
124 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
125 |
-
|
126 |
-
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
|
127 |
-
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", device_map="auto", torch_dtype=torch.float16)
|
128 |
-
|
129 |
-
input_text = "Question: How many hours in one day? Answer: "
|
130 |
-
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
131 |
-
|
132 |
-
outputs = model.generate(input_ids)
|
133 |
-
print(tokenizer.decode(outputs[0]))
|
134 |
-
```
|
135 |
-
|
136 |
-
</details>
|
137 |
-
|
138 |
-
#### 4-bit
|
139 |
-
|
140 |
-
<details>
|
141 |
-
<summary> Click to expand </summary>
|
142 |
-
|
143 |
-
```python
|
144 |
-
# pip install bitsandbytes accelerate
|
145 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
146 |
-
|
147 |
-
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
|
148 |
-
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True))
|
149 |
-
|
150 |
-
input_text = "Question: How many hours in one day? Answer: "
|
151 |
-
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
152 |
|
153 |
outputs = model.generate(input_ids)
|
154 |
print(tokenizer.decode(outputs[0]))
|
@@ -157,7 +89,6 @@ print(tokenizer.decode(outputs[0]))
|
|
157 |
</details>
|
158 |
|
159 |
|
160 |
-
|
161 |
# Training Details
|
162 |
|
163 |
## Training Data
|
|
|
46 |
|
47 |
## Using the Pytorch model
|
48 |
|
49 |
+
This checkpoint will only run on a GPU device with `bitsandbytes` installed. See below for more details on how to load it
|
50 |
|
51 |
<details>
|
52 |
<summary> Click to expand </summary>
|
|
|
54 |
```python
|
55 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
56 |
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-4bit")
|
58 |
+
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-4bit")
|
59 |
|
60 |
input_text = "Question: How many hours in one day? Answer: "
|
61 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
|
|
66 |
|
67 |
</details>
|
68 |
|
69 |
+
You can also dequantize the model with `model.dequantize()` method:
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
<details>
|
73 |
<summary> Click to expand </summary>
|
74 |
|
75 |
```python
|
|
|
76 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
77 |
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-4bit")
|
79 |
+
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-4bit")
|
80 |
+
model = model.dequantize()
|
|
|
81 |
|
82 |
input_text = "Question: How many hours in one day? Answer: "
|
83 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
outputs = model.generate(input_ids)
|
86 |
print(tokenizer.decode(outputs[0]))
|
|
|
89 |
</details>
|
90 |
|
91 |
|
|
|
92 |
# Training Details
|
93 |
|
94 |
## Training Data
|