File size: 8,765 Bytes
33e9db5
 
 
 
 
 
 
 
 
7541925
 
33e9db5
7541925
33e9db5
 
78e6344
 
 
 
33e9db5
 
 
 
4cf1db0
33e9db5
 
 
 
 
 
 
 
 
 
 
 
28519b8
33e9db5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a46dd97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21b3491
c2b78c8
21b3491
33e9db5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2b78c8
 
 
33e9db5
 
 
c2b78c8
 
 
33e9db5
 
 
 
 
 
 
 
 
 
c2b78c8
 
 
33e9db5
 
 
c2b78c8
 
 
33e9db5
 
 
c2b78c8
 
4cf1db0
33e9db5
 
 
 
c2b78c8
 
 
33e9db5
 
 
2d89dec
33e9db5
2d89dec
33e9db5
 
 
 
 
 
 
 
 
 
2d89dec
33e9db5
 
 
 
c2b78c8
2d89dec
33e9db5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cf1db0
 
 
33e9db5
 
43ca5d0
4cf1db0
33e9db5
4cf1db0
33e9db5
 
 
 
 
 
5563a37
33e9db5
 
 
 
a46dd97
 
 
21b3491
33e9db5
 
 
 
 
 
 
 
 
 
 
 
 
5563a37
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
---
language:
- en
- fr
- es
- pt
tags:
- falcon3
base_model: tiiuae/Falcon3-7B-Base
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
library_name: transformers
---

<div align="center">
    <img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
</div>

# Falcon3-7B-Instruct

**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.

This repository contains the **Falcon3-7B-Instruct**. It achieves state of art results (at the time of release) on reasoning, language understanding, instruction following, code and mathematics tasks.
Falcon3-7B-Instruct supports 4 languages (english, french, spanish, portuguese) and a context length up to 32K.

## Model Details
- Architecture
  - Transformer based causal decoder only architecture
  - 28 decoder blocks
  - Grouped query attention (GQA) for faster inference: 12 query heads and 4 key value heads
  - Wider head dimension: 256
  - High RoPE value to support long context understanding: 1000042
  - Uses SwiGLU and RMSNorm
  - 32K context length
  - 131K vocab size
- Pretrained on 14 Teratokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips
- Postrained on 1.2 million samples of STEM, conversations, code, safety and function call data
- Supports EN, FR, ES, PT
- Developed by [Technology Innovation Institute](https://www.tii.ae)
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024


## Getting started

<details>
<summary> Click to expand </summary>

```python
from transformers import AutoTokenizer, AutoModelForCausalLM


from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "tiiuae/Falcon3-7B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"]
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many hours in one day?"
messages = [
    {"role": "system", "content": "You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=1024
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

</details>

<br>

## Benchmarks
We report the official HuggingFace leaderboard normalized evaluations [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) in the following table.
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
    <colgroup>
        <col style="width: 10%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
    </colgroup>
    <thead>
        <tr>
            <th>Benchmark</th>
            <th>Llama-3.1-8B-Instruct</th>
            <th>Qwen2.5-7B-Instruct</th>
            <th>Falcon3-7B-Instruct</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>IFEval</td>
            <td><b>78.56</b></td>
            <td>75.85</td>
            <td>76.12</td>
        </tr>
        <tr>
            <td>BBH (3-shot)</td>
            <td>29.89</td>
            <td>34.89</td>
            <td><b>37.92</b></td>
        </tr>
        <tr>
            <td>MATH Lvl-5 (4-shot)</td>
            <td>19.34</td>
            <td>0.00</td>
            <td><b>31.87</b></td>
        </tr>              
        <tr>
            <td>GPQA (0-shot)</td>
            <td>2.35</td>
            <td>5.48</td>
            <td><b>8.05</b></td>
        </tr>
        <tr>
            <td>MUSR (0-shot)</td>
            <td>8.41</td>
            <td>8.45</td>
            <td><b>21.17</b></td>
        </tr>
        <tr>
            <td>MMLU-PRO (5-shot)</td>
            <td>30.68</td>
            <td><b>36.52</b></td>
            <td>34.30</td>
        </tr>        
    </tbody>
</table>

Also, we report in the following table our internal pipeline benchmarks.
 - We use [lm-evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness).
 - We report **raw scores** obtained by applying chat template and fewshot_as_multiturn.
 - We use same batch-size across all models.

<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
    <colgroup>
        <col style="width: 10%;">
        <col style="width: 10%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
    </colgroup>
    <thead>
        <tr>
            <th>Category</th>
            <th>Benchmark</th>
            <th>Llama-3.1-8B-Instruct</th>
            <th>Qwen2.5-7B-Instruct</th>
            <th>Falcon3-7B-Instruct</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td rowspan="3">General</td>
            <td>MMLU (5-shot)</td>
            <td>68.2</td>
            <td><b>73.5</b></td>
            <td>70.5</td>
        </tr>
        <tr>
            <td>MMLU-PRO (5-shot)</td>
            <td>36.4</td>
            <td><b>43.1</b></td>
            <td>40.7</td>
        </tr>
        <tr>
            <td>IFEval</td>
            <td><b>78.8</b></td>
            <td>74.7</td>
            <td>76.5</td>
        </tr>
        <tr>
            <td rowspan="3">Math</td>
            <td>GSM8K (5-shot)</td>
            <td><b>82.6</b></td>
            <td>72.0</td>
            <td>81.4</td>
        </tr>
        <tr>
            <td>GSM8K (8-shot, COT)</td>
            <td><b>85.4</b></td>
            <td>76.6</td>
            <td>79.7</td>
        </tr>
        <tr>
            <td>MATH Lvl-5 (4-shot)</td>
            <td>15.4</td>
            <td>-</td>
            <td><b>29.4</b></td>
        </tr>
        <tr>
            <td rowspan="5">Reasoning</td>
            <td>Arc Challenge (25-shot)</td>
            <td>58.6</td>
            <td>57.8</td>
            <td><b>62.6</b></td>
        </tr>
        <tr>
            <td>GPQA (0-shot)</td>
            <td><b>33.5</b></td>
            <td>32</td>
            <td>31.9</td>
        </tr>
        <tr>
            <td>GPQA (0-shot, COT)</td>
            <td>9.6</td>
            <td>13.8</td>
            <td><b>22.3</b></td>
        </tr>
        <tr>
            <td>MUSR (0-shot)</td>
            <td>38.6</td>
            <td>41</td>
            <td><b>46.4</b></td>
        </tr>
        <tr>
            <td>BBH (3-shot)</td>
            <td>48.6</td>
            <td><b>54.1</b></td>
            <td>52.4</td>
        </tr>
        <tr>
            <td rowspan="4">CommonSense Understanding</td>
            <td>PIQA (0-shot)</td>
            <td><b>78.9</b></td>
            <td>73.7</td>
            <td>78.8</td>
        </tr>
        <tr>
            <td>SciQ (0-shot)</td>
            <td>80.2</td>
            <td>50.9</td>
            <td><b>94.7</b></td>
        </tr>
        <tr>
            <td>Winogrande (0-shot)</td>
            <td>-</td>
            <td>-</td>
            <td>70.4</td>
        </tr>
        <tr>
            <td>OpenbookQA (0-shot)</td>
            <td><b>46.2</b></td>
            <td>42.4</td>
            <td>45.8</td>
        </tr>
        <tr>
            <td rowspan="2">Instructions following</td>
            <td>MT-Bench (avg)</td>
            <td>7.9</td>
            <td><b>8.5</b></td>
            <td>8.4</td>
        </tr>
        <tr>
            <td>Alpaca (WC)</td>
            <td>26.6</td>
            <td><b>31.5</b></td>
            <td>26.1</td>
        </tr>
        <tr>
            <td>Tool use</td>
            <td>BFCL AST (avg)</td>
            <td>90.6</td>
            <td><b>91.4</b></td>
            <td>89.5</td>
        </tr>
    </tbody>
</table>

## Useful links
- View our [release blogpost](https://huggingface.co/blog/falcon3).
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.

## Technical Report
Coming soon....

## Citation
If Falcon3 family were helpful to your work, feel free to give us a cite.

```
@misc{Falcon3,
    title = {The Falcon 3 family of Open Models},
    author = {TII Team},
    month = {December},
    year = {2024}
}
```