File size: 4,972 Bytes
8c6e7c5
f42ec5a
bab14db
ab2a252
 
 
8c6e7c5
 
 
bab14db
d9e6889
bab14db
d9e6889
bab14db
d9e6889
 
bab14db
2f84a59
109c33b
d9e6889
 
cee7ab0
d9e6889
d5488b9
cee7ab0
 
204fce4
7c7b3f8
d9e6889
 
 
 
 
bab14db
 
d9e6889
bab14db
 
 
 
 
 
d9e6889
 
 
 
 
 
 
 
 
 
bab14db
 
 
 
d9e6889
43fb3cd
d9e6889
 
bab14db
 
8ad640d
e29972d
bad033a
 
 
 
 
 
b261b5b
bad033a
 
 
 
 
 
 
d9e6889
06807eb
bad033a
 
 
 
 
 
 
 
b61e7ea
bad033a
 
 
 
 
 
b61e7ea
bad033a
 
 
 
 
 
b61e7ea
bad033a
 
e29972d
 
 
 
 
7c7b3f8
e29972d
 
 
 
 
 
b61e7ea
e29972d
 
 
 
 
 
 
7c7b3f8
e29972d
 
 
 
 
 
b61e7ea
e29972d
 
 
 
 
 
b61e7ea
e29972d
 
 
 
 
 
b61e7ea
e29972d
 
 
 
 
 
 
7c7b3f8
e29972d
 
 
 
 
 
7c7b3f8
e29972d
 
 
 
 
 
7c7b3f8
e29972d
 
 
 
 
 
7c7b3f8
e29972d
 
bad033a
 
 
 
d9e6889
 
e29972d
d9e6889
 
da3e071
d9e6889
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
language:
- en
- fr
- es
- pt
tags:
- falcon3
---

# Falcon3-7B-Base

**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.

This repository contains the **Falcon3-7B-Base**. It achieves state of art results (at release's time) on reasoning, language understanding, instruction following, code and mathematics tasks.
Falcon3-7B-Base supports 4 languages (english, french, spanish, portuguese) and a context length up to 32K.

⚠️ **This is a raw, pretrained model, which should be further finetuned using SFT, RLHF, continued pretraining, etc. for most usecases.** 

## Model Details
- Architecture
  - Transformer based causal decoder only architecture
  - 28 decoder blocks
  - Grouped query attention (GQA) for faster inference: 12 query heads and 4 key value heads
  - Wider head dimension: 256
  - High RoPE value to support long context understanding: 1000042
  - 32K context length
  - 131K vocab size
- Pretrained on 14 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 2048 H100 GPU chips
- Supports EN, FR, ES, PT
- Developed by [Technology Innovation Institute](https://www.tii.ae)
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024


## Getting started

<details>
<summary> Click to expand </summary>

```python
import torch
from transformers import pipeline

pipe = pipeline(
    "text-generation", 
    model="tiiuae/Falcon3-7B-Base", 
    torch_dtype=torch.bfloat16, 
    device_map="auto"
)
response = pipe("Question: How many hours in one day? Answer: ")
print(response[0]['generated_text'])
```

</details>

<br>

# Benchmarks
We report in the following table our internal pipeline benchmarks:



<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
    <colgroup>
        <col style="width: 10%;">
        <col style="width: 10%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
    </colgroup>
    <thead>
        <tr>
            <th>Category</th>
            <th>Benchmark</th>
            <th>Llama3.1-8B</th>
            <th>Qwen2.5-7B</th>
            <th>gemma-2-9b</th>
            <th>Falcon3-7B-Base</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td rowspan="3">General</td>
            <td>MMLU (5-shot)</td>
            <td>65.2</td>
            <td>74.2</td>
            <td>70.8</td>
            <td>67.5</td>
        </tr>
        <tr>
            <td>MMLU-PRO (5-shot)</td>
            <td>32.7</td>
            <td>43.5</td>
            <td>41.4</td>
            <td>39.2</td>
        </tr>
        <tr>
            <td>IFEval</td>
            <td>12.0</td>
            <td>33.9</td>
            <td>21.2</td>
            <td>34.3</td>
        </tr>
        <tr>
            <td rowspan="2">Math</td>
            <td>GSM8K (5-shot)</td>
            <td>49.4</td>
            <td>82.9</td>
            <td>69.1</td>
            <td>76.2</td>
        </tr>
        <tr>
            <td>MATH(4-shot)</td>
            <td>4.1</td>
            <td>15.5</td>
            <td>10.5</td>
            <td>18.0</td>
        </tr>
        <tr>
            <td rowspan="4">Reasoning</td>
            <td>Arc Challenge (25-shot)</td>
            <td>53.4</td>
            <td>59.0</td>
            <td>63.7</td>
            <td>59.6</td>
        </tr>
        <tr>
            <td>GPQA (0-shot)</td>
            <td>31.0</td>
            <td>33.0</td>
            <td>33.4</td>
            <td>35.5</td>
        </tr>
        <tr>
            <td>MUSR (0-shot)</td>
            <td>38.0</td>
            <td>44.2</td>
            <td>45.3</td>
            <td>47.3</td>
        </tr>
        <tr>
            <td>BBH (3-shot)</td>
            <td>46.5</td>
            <td>54.0</td>
            <td>54.3</td>
            <td>51.0</td>
        </tr>
        <tr>
            <td rowspan="4">CommonSense Understanding</td>
            <td>PIQA (0-shot)</td>
            <td>80.3</td>
            <td>78.7</td>
            <td>81.4</td>
            <td>77.7</td>
        </tr>
        <tr>
            <td>SciQ (0-shot)</td>
            <td>96.3</td>
            <td>96.6</td>
            <td>97.2</td>
            <td>95.3</td>
        </tr>
        <tr>
            <td>Winogrande (0-shot)</td>
            <td>74.0</td>
            <td>72.9</td>
            <td>74.2</td>
            <td>71.0</td>
        </tr>
        <tr>
            <td>OpenbookQA (0-shot)</td>
            <td>33.4</td>
            <td>33.6</td>
            <td>34.0</td>
            <td>31.4</td>
        </tr>
    </tbody>
</table>


# Citation
If Falcon3 family were helpful to your work, feel free to give us a cite.

```
@misc{Falcon3,
    title = {The Falcon 3 family of Open Models},
    author = {TII Team},
    month = {December},
    year = {2024}
}
```