Edit model card

punctuation-taboa-bert

This model is a fine-tuned version of neuralmind/bert-large-portuguese-cased on the tapaco dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0181
  • Precision: 0.9850
  • Recall: 0.9836
  • F1: 0.9843
  • Accuracy: 0.9946

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0272 1.0 17438 0.0181 0.9850 0.9836 0.9843 0.9946
0.0234 2.0 34876 0.0196 0.9870 0.9853 0.9862 0.9948
0.0092 3.0 52314 0.0233 0.9874 0.9853 0.9864 0.9950

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.2
  • Tokenizers 0.13.1
Downloads last month
12

Dataset used to train tiagoblima/punctuation-taboa-bert

Evaluation results