Edit model card

sparse_llama_7b_hf2_refined_web_70p_2024-03-28

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1370

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 4
  • seed: 0
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2600

Training results

Training Loss Epoch Step Validation Loss
2.5973 0.0 25 2.4361
2.3245 0.01 50 2.4253
2.3668 0.01 75 2.4063
2.3521 0.02 100 2.3820
2.3119 0.02 125 2.3613
2.4636 0.02 150 2.3452
2.3372 0.03 175 2.3331
2.2927 0.03 200 2.3267
2.3831 0.04 225 2.3196
2.4013 0.04 250 2.3158
2.2576 0.04 275 2.3109
2.2803 0.05 300 2.3104
2.3531 0.05 325 2.3070
2.0961 0.06 350 2.3066
2.2809 0.06 375 2.3042
2.4516 0.06 400 2.3034
2.3927 0.07 425 2.3027
2.3188 0.07 450 2.3030
2.2165 0.08 475 2.3028
2.2814 0.08 500 2.3003
2.3224 0.08 525 2.3005
2.2267 0.09 550 2.2991
2.3238 0.09 575 2.2976
2.1845 0.1 600 2.2992
2.2896 0.1 625 2.2994
2.334 0.1 650 2.2973
2.3298 0.11 675 2.2972
2.2847 0.11 700 2.2950
2.2589 0.12 725 2.2966
2.1715 0.12 750 2.2949
2.3554 0.12 775 2.2940
2.3217 0.13 800 2.2970
2.3374 0.13 825 2.2940
2.2951 0.14 850 2.2933
2.1613 0.14 875 2.2934
2.278 0.14 900 2.2928
2.1964 0.15 925 2.2930
2.3489 0.15 950 2.2926
2.3561 0.16 975 2.2919
2.3854 0.16 1000 2.2907
2.3849 0.16 1025 2.2931
2.2953 0.17 1050 2.2917
2.3519 0.17 1075 2.2901
2.2702 0.18 1100 2.2927
2.2834 0.18 1125 2.2888
2.4015 0.18 1150 2.2925
2.3967 0.19 1175 2.2915
2.1978 0.19 1200 2.2892
2.2758 0.2 1225 2.2886
2.2774 0.2 1250 2.2905
2.3803 0.2 1275 2.2930
2.3233 0.21 1300 2.2909
2.2431 0.21 1325 2.2908
2.2042 0.22 1350 2.2885
2.3585 0.22 1375 2.2885
2.2779 0.22 1400 2.2906
2.2119 0.23 1425 2.2883
2.2257 0.23 1450 2.2876
2.2383 0.24 1475 2.2892
2.2166 0.24 1500 2.2899
2.1817 0.24 1525 2.2872
2.3113 0.25 1550 2.2880
2.3212 0.25 1575 2.2876
2.3027 0.26 1600 2.2838
2.2737 0.26 1625 2.2888
2.3181 0.26 1650 2.2865
2.2759 0.27 1675 2.2871
2.3179 0.27 1700 2.2858
2.3111 0.28 1725 2.2862
2.2699 0.28 1750 2.2872
2.3006 0.28 1775 2.2859
2.1913 0.29 1800 2.2849
2.3133 0.29 1825 2.2852
2.286 0.3 1850 2.2849
2.3403 0.3 1875 2.2860
2.2713 0.3 1900 2.2843
2.3492 0.31 1925 2.2840
2.2747 0.31 1950 2.2840
2.2783 0.32 1975 2.2841
2.1854 0.32 2000 2.2836
2.2544 0.32 2025 2.2826
2.2955 0.33 2050 2.2837
2.2053 0.33 2075 2.2849
2.2848 0.34 2100 2.2841
2.4168 0.34 2125 2.2843
2.268 0.34 2150 2.2814
2.2045 0.35 2175 2.2841
2.2717 0.35 2200 2.2825
2.1958 0.36 2225 2.2827
2.1635 0.36 2250 2.2867
2.3043 0.36 2275 2.2820
2.3106 0.37 2300 2.2845
2.1992 0.37 2325 2.2829
2.2189 0.38 2350 2.2817
2.3096 0.38 2375 2.2830
2.2803 0.38 2400 2.2839
2.1752 0.39 2425 2.2825
2.1324 0.39 2450 2.2834
2.207 0.4 2475 2.2846
2.3369 0.4 2500 2.2844
2.3512 0.4 2525 2.2853
2.1432 0.41 2550 2.2861
2.1743 0.41 2575 2.2832
2.2696 0.42 2600 2.2832

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.2
Downloads last month
11
Safetensors
Model size
6.74B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for thrunlab/sparse_llama_7b_hf2_refined_web_70p_2024-03-28

Finetuned
(589)
this model