sparse_llama_7b_hf2_refined_web_70p_2024-03-28
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1370
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 4
- seed: 0
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2600
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.5973 | 0.0 | 25 | 2.4361 |
2.3245 | 0.01 | 50 | 2.4253 |
2.3668 | 0.01 | 75 | 2.4063 |
2.3521 | 0.02 | 100 | 2.3820 |
2.3119 | 0.02 | 125 | 2.3613 |
2.4636 | 0.02 | 150 | 2.3452 |
2.3372 | 0.03 | 175 | 2.3331 |
2.2927 | 0.03 | 200 | 2.3267 |
2.3831 | 0.04 | 225 | 2.3196 |
2.4013 | 0.04 | 250 | 2.3158 |
2.2576 | 0.04 | 275 | 2.3109 |
2.2803 | 0.05 | 300 | 2.3104 |
2.3531 | 0.05 | 325 | 2.3070 |
2.0961 | 0.06 | 350 | 2.3066 |
2.2809 | 0.06 | 375 | 2.3042 |
2.4516 | 0.06 | 400 | 2.3034 |
2.3927 | 0.07 | 425 | 2.3027 |
2.3188 | 0.07 | 450 | 2.3030 |
2.2165 | 0.08 | 475 | 2.3028 |
2.2814 | 0.08 | 500 | 2.3003 |
2.3224 | 0.08 | 525 | 2.3005 |
2.2267 | 0.09 | 550 | 2.2991 |
2.3238 | 0.09 | 575 | 2.2976 |
2.1845 | 0.1 | 600 | 2.2992 |
2.2896 | 0.1 | 625 | 2.2994 |
2.334 | 0.1 | 650 | 2.2973 |
2.3298 | 0.11 | 675 | 2.2972 |
2.2847 | 0.11 | 700 | 2.2950 |
2.2589 | 0.12 | 725 | 2.2966 |
2.1715 | 0.12 | 750 | 2.2949 |
2.3554 | 0.12 | 775 | 2.2940 |
2.3217 | 0.13 | 800 | 2.2970 |
2.3374 | 0.13 | 825 | 2.2940 |
2.2951 | 0.14 | 850 | 2.2933 |
2.1613 | 0.14 | 875 | 2.2934 |
2.278 | 0.14 | 900 | 2.2928 |
2.1964 | 0.15 | 925 | 2.2930 |
2.3489 | 0.15 | 950 | 2.2926 |
2.3561 | 0.16 | 975 | 2.2919 |
2.3854 | 0.16 | 1000 | 2.2907 |
2.3849 | 0.16 | 1025 | 2.2931 |
2.2953 | 0.17 | 1050 | 2.2917 |
2.3519 | 0.17 | 1075 | 2.2901 |
2.2702 | 0.18 | 1100 | 2.2927 |
2.2834 | 0.18 | 1125 | 2.2888 |
2.4015 | 0.18 | 1150 | 2.2925 |
2.3967 | 0.19 | 1175 | 2.2915 |
2.1978 | 0.19 | 1200 | 2.2892 |
2.2758 | 0.2 | 1225 | 2.2886 |
2.2774 | 0.2 | 1250 | 2.2905 |
2.3803 | 0.2 | 1275 | 2.2930 |
2.3233 | 0.21 | 1300 | 2.2909 |
2.2431 | 0.21 | 1325 | 2.2908 |
2.2042 | 0.22 | 1350 | 2.2885 |
2.3585 | 0.22 | 1375 | 2.2885 |
2.2779 | 0.22 | 1400 | 2.2906 |
2.2119 | 0.23 | 1425 | 2.2883 |
2.2257 | 0.23 | 1450 | 2.2876 |
2.2383 | 0.24 | 1475 | 2.2892 |
2.2166 | 0.24 | 1500 | 2.2899 |
2.1817 | 0.24 | 1525 | 2.2872 |
2.3113 | 0.25 | 1550 | 2.2880 |
2.3212 | 0.25 | 1575 | 2.2876 |
2.3027 | 0.26 | 1600 | 2.2838 |
2.2737 | 0.26 | 1625 | 2.2888 |
2.3181 | 0.26 | 1650 | 2.2865 |
2.2759 | 0.27 | 1675 | 2.2871 |
2.3179 | 0.27 | 1700 | 2.2858 |
2.3111 | 0.28 | 1725 | 2.2862 |
2.2699 | 0.28 | 1750 | 2.2872 |
2.3006 | 0.28 | 1775 | 2.2859 |
2.1913 | 0.29 | 1800 | 2.2849 |
2.3133 | 0.29 | 1825 | 2.2852 |
2.286 | 0.3 | 1850 | 2.2849 |
2.3403 | 0.3 | 1875 | 2.2860 |
2.2713 | 0.3 | 1900 | 2.2843 |
2.3492 | 0.31 | 1925 | 2.2840 |
2.2747 | 0.31 | 1950 | 2.2840 |
2.2783 | 0.32 | 1975 | 2.2841 |
2.1854 | 0.32 | 2000 | 2.2836 |
2.2544 | 0.32 | 2025 | 2.2826 |
2.2955 | 0.33 | 2050 | 2.2837 |
2.2053 | 0.33 | 2075 | 2.2849 |
2.2848 | 0.34 | 2100 | 2.2841 |
2.4168 | 0.34 | 2125 | 2.2843 |
2.268 | 0.34 | 2150 | 2.2814 |
2.2045 | 0.35 | 2175 | 2.2841 |
2.2717 | 0.35 | 2200 | 2.2825 |
2.1958 | 0.36 | 2225 | 2.2827 |
2.1635 | 0.36 | 2250 | 2.2867 |
2.3043 | 0.36 | 2275 | 2.2820 |
2.3106 | 0.37 | 2300 | 2.2845 |
2.1992 | 0.37 | 2325 | 2.2829 |
2.2189 | 0.38 | 2350 | 2.2817 |
2.3096 | 0.38 | 2375 | 2.2830 |
2.2803 | 0.38 | 2400 | 2.2839 |
2.1752 | 0.39 | 2425 | 2.2825 |
2.1324 | 0.39 | 2450 | 2.2834 |
2.207 | 0.4 | 2475 | 2.2846 |
2.3369 | 0.4 | 2500 | 2.2844 |
2.3512 | 0.4 | 2525 | 2.2853 |
2.1432 | 0.41 | 2550 | 2.2861 |
2.1743 | 0.41 | 2575 | 2.2832 |
2.2696 | 0.42 | 2600 | 2.2832 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.2
- Downloads last month
- 11
Inference API (serverless) does not yet support model repos that contain custom code.
Model tree for thrunlab/sparse_llama_7b_hf2_refined_web_70p_2024-03-28
Base model
meta-llama/Llama-2-7b-hf