relu_llama_7b_hf_fp16_refined_web_relu_2024-03-27
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.6852
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 0
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.1534 | 0.01 | 25 | 9.9183 |
8.7138 | 0.02 | 50 | 8.3260 |
7.3744 | 0.02 | 75 | 7.3115 |
6.2344 | 0.03 | 100 | 6.1079 |
5.5305 | 0.04 | 125 | 5.1969 |
4.5244 | 0.05 | 150 | 4.5551 |
4.0661 | 0.06 | 175 | 4.1037 |
3.8614 | 0.06 | 200 | 3.7818 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.2
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for thrunlab/relu_llama_7b_hf_fp16_refined_web_relu_2024-03-27
Base model
meta-llama/Llama-2-7b-hf