relu_llama_7b_hf2_refined_web_relu_2024-03-28

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 0
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2600

Training results

Training Loss Epoch Step Validation Loss
9.7497 0.0 25 9.2613
8.0241 0.01 50 7.7537
6.8496 0.01 75 6.7390
5.8173 0.02 100 5.6115
4.9513 0.02 125 4.8869
4.4377 0.02 150 4.3805
4.0562 0.03 175 3.9836
3.6569 0.03 200 3.7061
3.5457 0.04 225 3.5205
3.4229 0.04 250 3.3833
3.214 0.04 275 3.2813
3.1747 0.05 300 3.2035
3.1654 0.05 325 3.1411
2.8801 0.06 350 3.0881
3.0155 0.06 375 3.0453
3.1558 0.06 400 3.0078
3.0349 0.07 425 2.9774
2.9819 0.07 450 2.9491
2.8286 0.08 475 2.9239
2.8718 0.08 500 2.9013
2.9262 0.08 525 2.8812
2.8091 0.09 550 2.8623
2.8676 0.09 575 2.8440
2.7304 0.1 600 2.8292
2.8206 0.1 625 2.8158
2.8212 0.1 650 2.8037
2.8385 0.11 675 2.7907
2.7437 0.11 700 2.7797
2.7773 0.12 725 2.7696
2.6785 0.12 750 2.7611
2.7582 0.12 775 2.7510
2.7785 0.13 800 2.7414
2.7549 0.13 825 2.7339
2.7228 0.14 850 2.7257
2.5928 0.14 875 2.7189
2.7048 0.14 900 2.7118
2.6131 0.15 925 2.7052
2.7515 0.15 950 2.6994
2.7365 0.16 975 2.6933
2.7635 0.16 1000 2.6882
2.7883 0.16 1025 2.6841
2.7032 0.17 1050 2.6782
2.714 0.17 1075 2.6728
2.6427 0.18 1100 2.6684
2.6727 0.18 1125 2.6644
2.7536 0.18 1150 2.6593
2.7379 0.19 1175 2.6547
2.5601 0.19 1200 2.6500
2.6281 0.2 1225 2.6461
2.6526 0.2 1250 2.6421
2.7242 0.2 1275 2.6386
2.653 0.21 1300 2.6347
2.6 0.21 1325 2.6305
2.5249 0.22 1350 2.6274
2.7189 0.22 1375 2.6246
2.6152 0.22 1400 2.6213
2.5392 0.23 1425 2.6183
2.5463 0.23 1450 2.6154
2.5431 0.24 1475 2.6130
2.5586 0.24 1500 2.6102
2.5127 0.24 1525 2.6089
2.5918 0.25 1550 2.6058
2.6378 0.25 1575 2.6037
2.5993 0.26 1600 2.6015
2.591 0.26 1625 2.5990
2.635 0.26 1650 2.5970
2.5855 0.27 1675 2.5943
2.6332 0.27 1700 2.5914
2.6289 0.28 1725 2.5905
2.5877 0.28 1750 2.5890
2.5988 0.28 1775 2.5868
2.4806 0.29 1800 2.5856
2.6012 0.29 1825 2.5828
2.6017 0.3 1850 2.5810
2.6095 0.3 1875 2.5801
2.557 0.3 1900 2.5789
2.6358 0.31 1925 2.5772
2.5775 0.31 1950 2.5754
2.5535 0.32 1975 2.5728
2.4783 0.32 2000 2.5709
2.5554 0.32 2025 2.5702
2.5905 0.33 2050 2.5688
2.5019 0.33 2075 2.5666
2.5531 0.34 2100 2.5652
2.6945 0.34 2125 2.5644
2.5561 0.34 2150 2.5640
2.4812 0.35 2175 2.5618
2.5617 0.35 2200 2.5601
2.4838 0.36 2225 2.5582
2.4682 0.36 2250 2.5571
2.5724 0.36 2275 2.5552
2.5897 0.37 2300 2.5542
2.4834 0.37 2325 2.5525
2.4904 0.38 2350 2.5521
2.5974 0.38 2375 2.5501
2.5485 0.38 2400 2.5488
2.4389 0.39 2425 2.5480
2.4176 0.39 2450 2.5470
2.4975 0.4 2475 2.5457
2.6081 0.4 2500 2.5446
2.5989 0.4 2525 2.5431
2.411 0.41 2550 2.5407
2.4411 0.41 2575 2.5414
2.5473 0.42 2600 2.5409

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.2
Downloads last month
6
Safetensors
Model size
6.74B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support model that require custom code execution.

Model tree for thrunlab/relu_llama_7b_hf2_refined_web_relu_2024-03-28

Finetuned
(767)
this model