File size: 2,853 Bytes
d70ba2d ebfbed9 d70ba2d ebfbed9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: TheBloke/OpenHermes-2-Mistral-7B-GPTQ
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: teamtrack-ai
results: []
pipeline_tag: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# teamtrack-ai
This model is a fine-tuned version of [TheBloke/OpenHermes-2-Mistral-7B-GPTQ](https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GPTQ) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6303
- Rewards/chosen: -0.0503
- Rewards/rejected: -0.1912
- Rewards/accuracies: 0.875
- Rewards/margins: 0.1409
- Logps/rejected: -190.9696
- Logps/chosen: -89.6439
- Logits/rejected: -2.7104
- Logits/chosen: -2.8594
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6859 | 0.01 | 10 | 0.6664 | 0.0030 | -0.0376 | 0.6875 | 0.0406 | -189.4330 | -89.1108 | -2.7111 | -2.8122 |
| 0.6888 | 0.01 | 20 | 0.6478 | -0.0110 | -0.0944 | 0.875 | 0.0834 | -190.0014 | -89.2510 | -2.7160 | -2.8235 |
| 0.6397 | 0.01 | 30 | 0.6385 | -0.0256 | -0.1254 | 0.8125 | 0.0997 | -190.3110 | -89.3974 | -2.7148 | -2.8392 |
| 0.6501 | 0.02 | 40 | 0.6365 | -0.0472 | -0.1782 | 0.8125 | 0.1311 | -190.8396 | -89.6128 | -2.7116 | -2.8528 |
| 0.6852 | 0.03 | 50 | 0.6303 | -0.0503 | -0.1912 | 0.875 | 0.1409 | -190.9696 | -89.6439 | -2.7104 | -2.8594 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0 |