Phi-nut-Butter-Codebagel-v1

image/png

Model Details

Model Name: Phi-nut-Butter-Codebagel-v1 Base Model: microsoft/Phi-3-mini-128k-instruct
Fine-tuning Method: Supervised Fine-Tuning (SFT)
Dataset: Code Bagel
Training Data: 75,000 randomly selected rows from Code Bagel dataset
Training Duration: 23 hours
Hardware: Nvidia RTX A4500
Epochs: 3

Training Procedure

This model was fine-tuned to provide better instructions on code.

The training was conducted using PEFT and SFTTrainer on the Code Bagel dataset. Training was completed in 3 epochs over a span of 23 hours on an Nvidia A4500 GPU.

Intended Use

This model is designed to improve instruction-following capabilities, particularly for code-related tasks.

Getting Started

Instruct Template

<|system|>
{system_message} <|end|>
<|user|>
{Prompt) <|end|>
<|assistant|>

Transfromers

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

model_name_or_path = "thesven/Phi-nut-Butter-Codebagel-v1"

# BitsAndBytesConfig for loading the model in 4-bit precision
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype="float16",
)

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path,
    device_map="auto",
    trust_remote_code=False,
    revision="main",
    quantization_config=bnb_config
)
model.pad_token = model.config.eos_token_id

prompt_template = '''
<|system|>
You are an expert developer. Please help me with any coding questions.<|end|>
<|user|>
Create a function to get the total sum from an array of ints.<|end|>
<|assistant|>
'''

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.1, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=256)

generated_text = tokenizer.decode(output[0, len(input_ids[0]):], skip_special_tokens=True)
print(generated_text)
Downloads last month
5
Safetensors
Model size
3.82B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train thesven/Phi-nut-Butter-Codebagel-v1

Collection including thesven/Phi-nut-Butter-Codebagel-v1