Edit model card

bart-large-cnn-finetuned-roundup-8

This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4519
  • Rouge1: 49.5671
  • Rouge2: 27.0118
  • Rougel: 30.8538
  • Rougelsum: 45.5503
  • Gen Len: 141.75

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 132 1.3159 48.5275 28.0817 30.6646 45.5024 142.0
No log 2.0 264 1.2377 47.0791 27.4386 28.9458 44.1536 142.0
No log 3.0 396 1.2474 49.3567 29.5904 30.8029 46.6083 142.0
0.9623 4.0 528 1.2914 47.8795 27.0611 29.8538 44.4494 142.0
0.9623 5.0 660 1.2982 49.9921 28.4839 31.5688 46.9734 142.0
0.9623 6.0 792 1.3521 46.7269 25.8672 29.7325 43.8279 142.0
0.9623 7.0 924 1.4102 47.4995 26.0066 29.4342 44.1102 141.8
0.3734 8.0 1056 1.4519 49.5671 27.0118 30.8538 45.5503 141.75

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.