bert-base-uncased-FinedTuned
This model is a fine-tuned version of bert-base-uncased on the stsb_multi_mt dataset. It achieves the following results on the evaluation set:
- Loss: 2.7758
- Pearson: 0.2352
- Mse: 2.7758
- Custom Accuracy: 0.2611
- Dataset Accuracy: 0.1762
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 12000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Pearson | Mse | Custom Accuracy | Dataset Accuracy |
---|---|---|---|---|---|---|---|
0.028 | 5.5556 | 1000 | 2.7386 | 0.2467 | 2.7386 | 0.2502 | 0.1762 |
0.0269 | 11.1111 | 2000 | 2.8265 | 0.2229 | 2.8265 | 0.2589 | 0.1762 |
0.0088 | 16.6667 | 3000 | 2.8485 | 0.2219 | 2.8485 | 0.2654 | 0.1762 |
0.0141 | 22.2222 | 4000 | 2.8855 | 0.2086 | 2.8855 | 0.2661 | 0.1762 |
0.0099 | 27.7778 | 5000 | 2.8081 | 0.2328 | 2.8081 | 0.2632 | 0.1762 |
0.0248 | 33.3333 | 6000 | 2.7765 | 0.2309 | 2.7765 | 0.2625 | 0.1762 |
0.0353 | 38.8889 | 7000 | 2.8126 | 0.2296 | 2.8126 | 0.2748 | 0.1762 |
0.0892 | 44.4444 | 8000 | 2.8362 | 0.2327 | 2.8362 | 0.2567 | 0.1762 |
0.0488 | 50.0 | 9000 | 2.7667 | 0.2363 | 2.7667 | 0.2596 | 0.1762 |
0.0538 | 55.5556 | 10000 | 2.7885 | 0.2363 | 2.7885 | 0.2632 | 0.1762 |
0.0829 | 61.1111 | 11000 | 2.7837 | 0.2348 | 2.7837 | 0.2647 | 0.1762 |
0.1473 | 66.6667 | 12000 | 2.7758 | 0.2352 | 2.7758 | 0.2611 | 0.1762 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 39
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for theCuiCoders/bert-base-uncased-FinedTuned
Base model
google-bert/bert-base-uncased