whisper-large-v2-medical-9

This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1386

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
No log 0.2381 20 0.5954
0.9678 0.4762 40 0.3312
0.372 0.7143 60 0.1767
0.1657 0.9524 80 0.1568
0.1297 1.1905 100 0.1507
0.1297 1.4286 120 0.1455
0.0923 1.6667 140 0.1403
0.0974 1.9048 160 0.1376
0.0753 2.1429 180 0.1389
0.053 2.3810 200 0.1396
0.053 2.6190 220 0.1384
0.0601 2.8571 240 0.1386

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.20.1
Downloads last month
17
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tgrhn/whisper-large-v2-medical-9

Finetuned
(191)
this model