Heritage-in-Digital-Age-distilbert-base-uncased-expression-rating

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0133
  • Accuracy: 0.3496

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 18 1.9870 0.3333
No log 2.0 36 1.9731 0.3415
No log 3.0 54 2.0133 0.3496
No log 4.0 72 2.0809 0.3415
No log 5.0 90 2.1694 0.3008
No log 6.0 108 2.2611 0.2764
No log 7.0 126 2.2832 0.3008
No log 8.0 144 2.3670 0.2846
No log 9.0 162 2.4279 0.2683
No log 10.0 180 2.4460 0.3089
No log 11.0 198 2.5236 0.2846
No log 12.0 216 2.5896 0.3089
No log 13.0 234 2.6061 0.3008
No log 14.0 252 2.6813 0.2846
No log 15.0 270 2.6990 0.3252
No log 16.0 288 2.7439 0.3171
No log 17.0 306 2.7499 0.3415
No log 18.0 324 2.7737 0.3252
No log 19.0 342 2.7793 0.3252
No log 20.0 360 2.7775 0.3252

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
25
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.