simpletuner-lora
This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-dev.
The main validation prompt used during training was:
A photo-realistic image of a cat
Validation settings
- CFG:
3.0
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
None
- Seed:
42
- Resolution:
1776x512
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 2
- Training steps: 2000
- Learning rate: 0.0001
- Effective batch size: 2
- Micro-batch size: 2
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: optimi-lion
- Precision: bf16
- Quantised: Yes: fp8-quanto
- Xformers: Not used
- LyCORIS Config:
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
Datasets
garfield
- Repeats: 0
- Total number of images: 2206
- Total number of aspect buckets: 4
- Resolution: 512 px
- Cropped: False
- Crop style: None
- Crop aspect: None
Inference
import argparse
import torch
from helpers.models.flux.pipeline import FluxPipeline as DiffusionPipeline
from lycoris import create_lycoris_from_weights
from huggingface_hub import hf_hub_download
def generate_image(pipeline, prompt, output_file, num_inference_steps, width, height, guidance_scale, seed, device):
# Set device
pipeline.to(device)
# Generate image
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
num_inference_steps=num_inference_steps,
generator=generator,
width=width,
height=height,
guidance_scale=guidance_scale,
).images[0]
# Save image
output_file = "output.png"
image.save(output_file, format="PNG")
print(f"Image saved as {output_file}")
def main():
parser = argparse.ArgumentParser(description="Generate images using a custom diffusion pipeline with LoRA weights.")
parser.add_argument("--model_id", type=str, default='black-forest-labs/FLUX.1-dev', help="Model ID from Hugging Face Hub.")
parser.add_argument("--adapter_id", type=str, default='pytorch_lora_weights.safetensors', help="LoRA weights file.")
parser.add_argument("--lora_scale", type=float, default=1.0, help="Scale for LoRA weights.")
parser.add_argument("--output_file", type=str, default="output.png", help="Output file name for the generated image.")
parser.add_argument("--num_inference_steps", type=int, default=30, help="Number of inference steps.")
parser.add_argument("--guidance_scale", type=float, default=3.5, help="Guidance scale for the generation.")
parser.add_argument("--seed", type=int, default=1641421826, help="Random seed for reproducibility.")
parser.add_argument("--device", type=str, default='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu', help="Device to run the model on.")
args = parser.parse_args()
# Load model and weights
hf_hub_download(repo_id="terminusresearch/flux-lokr-garfield-nomask", filename=args.adapter_id, local_dir="./")
pipeline = DiffusionPipeline.from_pretrained(args.model_id, torch_dtype=torch.bfloat16)
# Apply LoRA weights
wrapper, _ = create_lycoris_from_weights(args.lora_scale, args.adapter_id, pipeline.transformer)
wrapper.merge_to()
print("Model loaded successfully. Ready to generate images.")
while True:
user_input = input("Enter a prompt or 'quit' to exit: ")
if user_input.lower() == 'quit':
break
# Check for resolution command
if user_input.startswith("resolution:"):
resolution = user_input.split(":")[1]
width, height = map(int, resolution.split("x"))
print(f"Resolution set to {width}x{height}")
continue
prompt = user_input
output_file = args.output_file.replace(".png", f"_{prompt.replace(' ', '_')}.png")
# Use default or previously set resolution
width = locals().get('width', 1024)
height = locals().get('height', 1024)
generate_image(
pipeline=pipeline,
prompt=prompt,
output_file=output_file,
num_inference_steps=args.num_inference_steps,
width=width,
height=height,
guidance_scale=args.guidance_scale,
seed=args.seed,
device=args.device
)
if __name__ == "__main__":
main()
- Downloads last month
- 9
Model tree for terminusresearch/flux-lokr-garfield-masked
Base model
black-forest-labs/FLUX.1-dev