2023MLMA_LAB9_task2
This model is a fine-tuned version of microsoft/biogpt on the ncbi_disease dataset. It achieves the following results on the evaluation set:
- Loss: 0.1673
- Precision: 0.4622
- Recall: 0.5550
- F1: 0.5044
- Accuracy: 0.9518
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.306 | 1.0 | 679 | 0.1701 | 0.3764 | 0.3938 | 0.3849 | 0.9442 |
0.1752 | 2.0 | 1358 | 0.1638 | 0.4538 | 0.5261 | 0.4873 | 0.9509 |
0.1072 | 3.0 | 2037 | 0.1673 | 0.4622 | 0.5550 | 0.5044 | 0.9518 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train yujie07/2023MLMA_LAB9_task2
Evaluation results
- Precision on ncbi_diseasevalidation set self-reported0.462
- Recall on ncbi_diseasevalidation set self-reported0.555
- F1 on ncbi_diseasevalidation set self-reported0.504
- Accuracy on ncbi_diseasevalidation set self-reported0.952