Edit model card

vit-weldclassifyv3

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2671
  • Accuracy: 0.9209

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 13
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8398 0.6410 100 1.0312 0.5036
0.5613 1.2821 200 0.7068 0.6619
0.4296 1.9231 300 0.4008 0.8309
0.3475 2.5641 400 0.3345 0.8813
0.1183 3.2051 500 0.4293 0.8489
0.1531 3.8462 600 0.2748 0.9137
0.1174 4.4872 700 0.3649 0.8813
0.0498 5.1282 800 0.3279 0.8921
0.0817 5.7692 900 0.2763 0.9353
0.0075 6.4103 1000 0.2671 0.9209
0.0265 7.0513 1100 0.3185 0.9209
0.0457 7.6923 1200 0.3776 0.9101
0.0032 8.3333 1300 0.2835 0.9388
0.0027 8.9744 1400 0.5365 0.8885
0.0024 9.6154 1500 0.2817 0.9460
0.0021 10.2564 1600 0.2890 0.9460
0.002 10.8974 1700 0.2934 0.9460
0.0019 11.5385 1800 0.2976 0.9460
0.0018 12.1795 1900 0.2996 0.9460
0.0018 12.8205 2000 0.3006 0.9460

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for th041/vit-weldclassifyv3

Finetuned
(1670)
this model

Evaluation results