Edit model card

lilt-form-read

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7208
  • Answer: {'precision': 0.8635321100917431, 'recall': 0.9216646266829865, 'f1': 0.8916518650088809, 'number': 817}
  • Header: {'precision': 0.6813186813186813, 'recall': 0.5210084033613446, 'f1': 0.5904761904761905, 'number': 119}
  • Question: {'precision': 0.9005424954792043, 'recall': 0.924791086350975, 'f1': 0.9125057260650481, 'number': 1077}
  • Overall Precision: 0.8753
  • Overall Recall: 0.8997
  • Overall F1: 0.8873
  • Overall Accuracy: 0.8077

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4555 10.53 200 0.9514 {'precision': 0.8207440811724915, 'recall': 0.8910648714810282, 'f1': 0.8544600938967137, 'number': 817} {'precision': 0.6233766233766234, 'recall': 0.40336134453781514, 'f1': 0.48979591836734687, 'number': 119} {'precision': 0.8611825192802056, 'recall': 0.9331476323119777, 'f1': 0.8957219251336899, 'number': 1077} 0.8358 0.8847 0.8596 0.7991
0.0457 21.05 400 1.4096 {'precision': 0.8654088050314466, 'recall': 0.8421052631578947, 'f1': 0.8535980148883374, 'number': 817} {'precision': 0.5833333333333334, 'recall': 0.5294117647058824, 'f1': 0.5550660792951542, 'number': 119} {'precision': 0.8606837606837607, 'recall': 0.9350046425255338, 'f1': 0.8963061860258122, 'number': 1077} 0.8480 0.8733 0.8605 0.7914
0.0144 31.58 600 1.4435 {'precision': 0.8720095693779905, 'recall': 0.8922888616891065, 'f1': 0.8820326678765881, 'number': 817} {'precision': 0.6428571428571429, 'recall': 0.5294117647058824, 'f1': 0.5806451612903226, 'number': 119} {'precision': 0.8682581786030061, 'recall': 0.9117920148560817, 'f1': 0.8894927536231884, 'number': 1077} 0.8591 0.8813 0.8700 0.8033
0.008 42.11 800 1.5197 {'precision': 0.8660287081339713, 'recall': 0.8861689106487148, 'f1': 0.8759830611010284, 'number': 817} {'precision': 0.5798319327731093, 'recall': 0.5798319327731093, 'f1': 0.5798319327731093, 'number': 119} {'precision': 0.8838248436103664, 'recall': 0.9182915506035283, 'f1': 0.9007285974499089, 'number': 1077} 0.8592 0.8852 0.8720 0.7921
0.0039 52.63 1000 1.4373 {'precision': 0.8733727810650888, 'recall': 0.9033047735618115, 'f1': 0.888086642599278, 'number': 817} {'precision': 0.6019417475728155, 'recall': 0.5210084033613446, 'f1': 0.5585585585585585, 'number': 119} {'precision': 0.8854351687388987, 'recall': 0.9257195914577531, 'f1': 0.9051293690422152, 'number': 1077} 0.8664 0.8927 0.8794 0.8096
0.0028 63.16 1200 1.7146 {'precision': 0.8490351872871736, 'recall': 0.9155446756425949, 'f1': 0.8810365135453475, 'number': 817} {'precision': 0.6941176470588235, 'recall': 0.4957983193277311, 'f1': 0.5784313725490197, 'number': 119} {'precision': 0.8852313167259787, 'recall': 0.9238625812441968, 'f1': 0.9041344843253067, 'number': 1077} 0.8622 0.8952 0.8784 0.7971
0.0022 73.68 1400 1.5638 {'precision': 0.8608893956670467, 'recall': 0.9241126070991432, 'f1': 0.8913813459268004, 'number': 817} {'precision': 0.6565656565656566, 'recall': 0.5462184873949579, 'f1': 0.5963302752293578, 'number': 119} {'precision': 0.8993536472760849, 'recall': 0.904363974001857, 'f1': 0.9018518518518519, 'number': 1077} 0.8713 0.8912 0.8811 0.8051
0.0009 84.21 1600 1.7113 {'precision': 0.8682080924855491, 'recall': 0.9192166462668299, 'f1': 0.8929845422116528, 'number': 817} {'precision': 0.65625, 'recall': 0.5294117647058824, 'f1': 0.586046511627907, 'number': 119} {'precision': 0.9085027726432532, 'recall': 0.9127205199628597, 'f1': 0.9106067623899953, 'number': 1077} 0.8796 0.8927 0.8861 0.8039
0.0009 94.74 1800 1.6397 {'precision': 0.8767942583732058, 'recall': 0.8971848225214198, 'f1': 0.8868723532970357, 'number': 817} {'precision': 0.6274509803921569, 'recall': 0.5378151260504201, 'f1': 0.579185520361991, 'number': 119} {'precision': 0.898458748866727, 'recall': 0.9201485608170845, 'f1': 0.9091743119266055, 'number': 1077} 0.8760 0.8882 0.8821 0.8042
0.0004 105.26 2000 1.7362 {'precision': 0.8690614136732329, 'recall': 0.9179926560587516, 'f1': 0.8928571428571428, 'number': 817} {'precision': 0.6458333333333334, 'recall': 0.5210084033613446, 'f1': 0.5767441860465117, 'number': 119} {'precision': 0.8928892889288929, 'recall': 0.9210770659238626, 'f1': 0.9067641681901281, 'number': 1077} 0.8715 0.8962 0.8837 0.8040
0.0003 115.79 2200 1.7208 {'precision': 0.8635321100917431, 'recall': 0.9216646266829865, 'f1': 0.8916518650088809, 'number': 817} {'precision': 0.6813186813186813, 'recall': 0.5210084033613446, 'f1': 0.5904761904761905, 'number': 119} {'precision': 0.9005424954792043, 'recall': 0.924791086350975, 'f1': 0.9125057260650481, 'number': 1077} 0.8753 0.8997 0.8873 0.8077
0.0002 126.32 2400 1.7281 {'precision': 0.8819362455726092, 'recall': 0.9143206854345165, 'f1': 0.8978365384615384, 'number': 817} {'precision': 0.6631578947368421, 'recall': 0.5294117647058824, 'f1': 0.5887850467289719, 'number': 119} {'precision': 0.8917710196779964, 'recall': 0.9257195914577531, 'f1': 0.9084282460136676, 'number': 1077} 0.8772 0.8977 0.8873 0.8060

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.