Edit model card

distilbert-ner-qlorafinetune-runs

This model is a fine-tuned version of distilbert-base-uncased on the conll2002 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2164
  • Precision: 0.6299
  • Recall: 0.6227
  • F1: 0.6263
  • Accuracy: 0.9372

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 640
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.0711 0.0766 20 0.7111 0.0 0.0 0.0 0.8570
0.5291 0.1533 40 0.5467 0.0 0.0 0.0 0.8570
0.4545 0.2299 60 0.4850 0.2172 0.1687 0.1899 0.8769
0.4113 0.3065 80 0.4470 0.3227 0.1765 0.2282 0.8816
0.3837 0.3831 100 0.4049 0.4187 0.3840 0.4006 0.8896
0.334 0.4598 120 0.3639 0.4695 0.4276 0.4476 0.8981
0.3342 0.5364 140 0.3499 0.5104 0.4520 0.4794 0.8997
0.322 0.6130 160 0.3281 0.4939 0.4920 0.4929 0.9091
0.2868 0.6897 180 0.3021 0.5207 0.4646 0.4911 0.9145
0.2788 0.7663 200 0.2878 0.5361 0.5064 0.5209 0.9185
0.2748 0.8429 220 0.2864 0.5419 0.5232 0.5324 0.9197
0.2435 0.9195 240 0.2750 0.5306 0.5294 0.5300 0.9205
0.238 0.9962 260 0.2636 0.5525 0.5623 0.5573 0.9239
0.2465 1.0728 280 0.2616 0.5574 0.5602 0.5588 0.9255
0.2296 1.1494 300 0.2607 0.5859 0.5409 0.5625 0.9252
0.2141 1.2261 320 0.2491 0.5728 0.5841 0.5784 0.9279
0.2229 1.3027 340 0.2483 0.5849 0.5767 0.5808 0.9289
0.2234 1.3793 360 0.2413 0.5906 0.5712 0.5808 0.9310
0.2217 1.4559 380 0.2416 0.5890 0.5944 0.5917 0.9321
0.208 1.5326 400 0.2337 0.6117 0.5889 0.6001 0.9326
0.1961 1.6092 420 0.2387 0.5950 0.6018 0.5984 0.9321
0.2237 1.6858 440 0.2263 0.6230 0.6094 0.6161 0.9353
0.2029 1.7625 460 0.2262 0.6377 0.6045 0.6207 0.9353
0.203 1.8391 480 0.2229 0.6246 0.6167 0.6206 0.9358
0.2098 1.9157 500 0.2221 0.6277 0.6264 0.6270 0.9363
0.1907 1.9923 520 0.2237 0.6197 0.6186 0.6191 0.9355
0.1774 2.0690 540 0.2214 0.6284 0.6170 0.6226 0.9365
0.1822 2.1456 560 0.2213 0.6267 0.6211 0.6239 0.9368
0.1783 2.2222 580 0.2180 0.6308 0.6266 0.6287 0.9371
0.1856 2.2989 600 0.2174 0.6289 0.6206 0.6247 0.9369
0.1773 2.3755 620 0.2172 0.6192 0.6278 0.6235 0.9362
0.1647 2.4521 640 0.2164 0.6299 0.6227 0.6263 0.9372

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for raulgdp/distilbert-ner-qlorafinetune-runs

Adapter
(200)
this model

Dataset used to train raulgdp/distilbert-ner-qlorafinetune-runs