Edit model card

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3640
  • Accuracy: 0.55

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1309 1.0 20 1.3481 0.4938
1.0746 2.0 40 1.3706 0.475
1.0367 3.0 60 1.3161 0.5375
0.9814 4.0 80 1.3837 0.45
0.886 5.0 100 1.3633 0.4875
0.8096 6.0 120 1.3045 0.5125
0.7669 7.0 140 1.3903 0.4938
0.708 8.0 160 1.2867 0.5125
0.6265 9.0 180 1.2244 0.5625
0.6191 10.0 200 1.3461 0.525
0.5598 11.0 220 1.3266 0.5625
0.4667 12.0 240 1.3050 0.5563
0.4613 13.0 260 1.3329 0.5375
0.4268 14.0 280 1.4020 0.5312
0.4256 15.0 300 1.3770 0.5188
0.3727 16.0 320 1.3655 0.5188
0.316 17.0 340 1.3642 0.5188
0.3223 18.0 360 1.2535 0.5938
0.3064 19.0 380 1.4173 0.4875
0.2866 20.0 400 1.3343 0.5625
0.2781 21.0 420 1.5072 0.4813
0.3027 22.0 440 1.5067 0.5125
0.26 23.0 460 1.4456 0.5687
0.2156 24.0 480 1.4825 0.525
0.1908 25.0 500 1.5369 0.5375
0.213 26.0 520 1.5397 0.5188
0.241 27.0 540 1.4804 0.5125
0.1974 28.0 560 1.5786 0.5062
0.225 29.0 580 1.4677 0.5375
0.2459 30.0 600 1.5392 0.5312
0.2146 31.0 620 1.6734 0.4625
0.1891 32.0 640 1.5012 0.55
0.2231 33.0 660 1.6265 0.5
0.1903 34.0 680 1.5405 0.5312
0.1852 35.0 700 1.6295 0.5
0.1768 36.0 720 1.5758 0.5375
0.1486 37.0 740 1.6176 0.5188
0.1814 38.0 760 1.5107 0.5375
0.1642 39.0 780 1.5315 0.55
0.1822 40.0 800 1.6309 0.525
0.1819 41.0 820 1.7033 0.4938
0.1326 42.0 840 1.6107 0.5437
0.1452 43.0 860 1.6219 0.55
0.128 44.0 880 1.4348 0.5813
0.1103 45.0 900 1.6185 0.5687
0.1386 46.0 920 1.5848 0.5312
0.1021 47.0 940 1.6036 0.5563
0.1414 48.0 960 1.5455 0.575
0.1989 49.0 980 1.5955 0.525
0.1458 50.0 1000 1.5511 0.55

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
43
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rafimumtaz/image_classification

Finetuned
(1684)
this model

Evaluation results