vit-xray-pneumonia-classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the chest-xray-classification dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0868
  • Accuracy: 0.9742

Inference example

from transformers import pipeline

classifier = pipeline(model="lxyuan/vit-xray-pneumonia-classification")

# image taken from https://www.news-medical.net/health/What-is-Viral-Pneumonia.aspx
classifier("https://d2jx2rerrg6sh3.cloudfront.net/image-handler/ts/20200618040600/ri/650/picture/2020/6/shutterstock_786937069.jpg")

>>>
[{'score': 0.990334689617157, 'label': 'PNEUMONIA'},
 {'score': 0.009665317833423615, 'label': 'NORMAL'}]

Training procedure

Notebook link: here

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
from transformers import EarlyStoppingCallback

training_args = TrainingArguments(
    output_dir="vit-xray-pneumonia-classification",
    remove_unused_columns=False,
    evaluation_strategy="epoch",
    save_strategy="epoch",
    logging_strategy="epoch",
    learning_rate=5e-5,
    per_device_train_batch_size=16,
    gradient_accumulation_steps=4,
    per_device_eval_batch_size=16,
    num_train_epochs=15,
    save_total_limit=2,
    warmup_ratio=0.1,
    load_best_model_at_end=True,
    metric_for_best_model="eval_loss",
    greater_is_better=False,
    fp16=True,
    push_to_hub=True,
    report_to="tensorboard"
)

early_stopping = EarlyStoppingCallback(early_stopping_patience=3)

trainer = Trainer(
    model=model,
    args=training_args,
    data_collator=data_collator,
    train_dataset=train_ds,
    eval_dataset=val_ds,
    tokenizer=processor,
    compute_metrics=compute_metrics,
    callbacks=[early_stopping],
)

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5152 0.99 63 0.2507 0.9245
0.2334 1.99 127 0.1766 0.9382
0.1647 3.0 191 0.1218 0.9588
0.144 4.0 255 0.1222 0.9502
0.1348 4.99 318 0.1293 0.9571
0.1276 5.99 382 0.1000 0.9665
0.1175 7.0 446 0.1177 0.9502
0.109 8.0 510 0.1079 0.9665
0.0914 8.99 573 0.0804 0.9717
0.0872 9.99 637 0.0800 0.9717
0.0804 11.0 701 0.0862 0.9682
0.0935 12.0 765 0.0883 0.9657
0.0686 12.99 828 0.0868 0.9742

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.9.0+cu102
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
826
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lxyuan/vit-xray-pneumonia-classification

Finetuned
(1791)
this model

Dataset used to train lxyuan/vit-xray-pneumonia-classification

Space using lxyuan/vit-xray-pneumonia-classification 1

Evaluation results