Edit model card

smolm-autoreg-bpe-counterfactual_babylm_indef_articles_with_pl_nouns_removal_new-seed_1024-1e-3

This model was trained from scratch on the kanishka/counterfactual_babylm_aann_indef_articles_with_pl_nouns_removal_new dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4015
  • Accuracy: 0.4107

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.5956 1.0 18600 3.7880 0.3589
3.3783 2.0 37200 3.5973 0.3816
3.2492 3.0 55800 3.4737 0.3920
3.174 4.0 74400 3.4102 0.3983
3.1174 5.0 93000 3.3910 0.4020
3.0763 6.0 111600 3.3897 0.4044
3.038 7.0 130200 3.3814 0.4058
3.0096 8.0 148800 3.3546 0.4082
2.9754 9.0 167400 3.3599 0.4077
2.9501 10.0 186000 3.3615 0.4083
2.9304 11.0 204600 3.3480 0.4101
2.9083 12.0 223200 3.3556 0.4097
2.8872 13.0 241800 3.3658 0.4093
2.8666 14.0 260400 3.3668 0.4103
2.841 15.0 279000 3.3685 0.4115
2.8247 16.0 297600 3.3752 0.4107
2.8096 17.0 316200 3.3834 0.4105
2.7845 18.0 334800 3.3846 0.4113
2.7699 19.0 353400 3.3916 0.4111
2.7549 20.0 372000 3.4015 0.4107

Framework versions

  • Transformers 4.38.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
22
Safetensors
Model size
97.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train kanishka/smolm-autoreg-bpe-counterfactual_babylm_indef_articles_with_pl_nouns_removal_new-seed_1024-1e-3

Evaluation results

  • Accuracy on kanishka/counterfactual_babylm_aann_indef_articles_with_pl_nouns_removal_new
    self-reported
    0.411