Edit model card

smolm-autoreg-bpe-counterfactual_babylm_aanns_dtanns-seed_1024-1e-4

This model was trained from scratch on the kanishka/counterfactual_babylm_aann_dtanns dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4264
  • Accuracy: 0.4056

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.0514 1.0 18595 4.2435 0.3101
3.5672 2.0 37190 3.7652 0.3622
3.3933 3.0 55785 3.5859 0.3792
3.2939 4.0 74380 3.5397 0.3863
3.2248 5.0 92975 3.4728 0.3919
3.173 6.0 111570 3.4672 0.3950
3.1332 7.0 130165 3.4249 0.3987
3.0958 8.0 148760 3.4232 0.3998
3.0709 9.0 167355 3.4138 0.4012
3.0426 10.0 185950 3.4269 0.4014
3.0138 11.0 204545 3.4023 0.4037
2.995 12.0 223140 3.4037 0.4035
2.9702 13.0 241735 3.3991 0.4043
2.954 14.0 260330 3.4180 0.4042
2.9299 15.0 278925 3.4060 0.4049
2.9106 16.0 297520 3.4084 0.4049
2.8923 17.0 316115 3.4154 0.4055
2.8795 18.0 334710 3.4195 0.4057
2.8628 19.0 353305 3.4225 0.4057
2.8497 20.0 371900 3.4264 0.4056

Framework versions

  • Transformers 4.38.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
14
Safetensors
Model size
97.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train kanishka/smolm-autoreg-bpe-counterfactual_babylm_aann_dtanns-seed_1024-1e-4

Evaluation results

  • Accuracy on kanishka/counterfactual_babylm_aann_dtanns
    self-reported
    0.406