See axolotl config
axolotl version: 0.4.0
base_model: meta-llama/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: vicgalle/alpaca-gpt4
type: alpaca
conversations: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: ./outputs/out_llama2_alpaca
hub_model_id: flydust/Llama-2-7b-Alpaca52k-GPT4
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true
warmup_ratio: 0.03
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 1
debug:
weight_decay: 0.
fsdp:
fsdp_config:
special_tokens:
Llama-2-7b-Alpaca52k-GPT4
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7849
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0592 | 0.0111 | 1 | 1.1104 |
0.8995 | 0.3343 | 30 | 0.8043 |
0.8809 | 0.6685 | 60 | 0.7920 |
0.8642 | 1.0028 | 90 | 0.7868 |
0.8402 | 1.3231 | 120 | 0.7844 |
0.8093 | 1.6574 | 150 | 0.7841 |
0.8071 | 1.9916 | 180 | 0.7804 |
0.7532 | 2.3120 | 210 | 0.7853 |
0.7667 | 2.6462 | 240 | 0.7844 |
0.7555 | 2.9805 | 270 | 0.7836 |
0.7569 | 3.3008 | 300 | 0.7851 |
0.7634 | 3.6351 | 330 | 0.7849 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for flydust/Llama-2-7b-Alpaca52k-GPT4
Base model
meta-llama/Llama-2-7b-hf