Edit model card

summarizer_samsum_model

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3992
  • Rouge1: 0.4144
  • Rouge2: 0.1805
  • Rougel: 0.3419
  • Rougelsum: 0.3418
  • Gen Len: 16.6732

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.4595 1.0 737 0.4170 0.3923 0.163 0.3243 0.3242 16.1826
0.4474 2.0 1474 0.4113 0.3991 0.1685 0.3304 0.3303 16.5925
0.4416 3.0 2211 0.4092 0.4021 0.1722 0.3337 0.3339 16.6023
0.4388 4.0 2948 0.4048 0.4062 0.1737 0.3361 0.3361 16.5731
0.4331 5.0 3685 0.4030 0.4093 0.1758 0.3379 0.338 16.696
0.4243 6.0 4422 0.4010 0.4111 0.1778 0.3396 0.3396 16.5728
0.4234 7.0 5159 0.4000 0.4129 0.1789 0.3406 0.3405 16.7139
0.425 8.0 5896 0.3996 0.4125 0.1797 0.3407 0.3407 16.7089
0.4247 9.0 6633 0.3993 0.4147 0.181 0.3421 0.3422 16.6943
0.4176 10.0 7370 0.3992 0.4144 0.1805 0.3419 0.3418 16.6732

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
60.5M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dewifaj/summarizer_samsum_model

Base model

google-t5/t5-small
Finetuned
(1513)
this model

Space using dewifaj/summarizer_samsum_model 1