hubert-base-ls960-finetuned-gtzan-efficient-label-smoothed

This model is a fine-tuned version of facebook/hubert-base-ls960 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2778
  • Accuracy: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • label_smoothing_factor: 0.9

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2946 1.0 113 2.2960 0.42
2.2821 2.0 226 2.2858 0.63
2.2842 3.0 339 2.2848 0.68
2.2685 4.0 452 2.2836 0.71
2.2688 5.0 565 2.2838 0.71
2.2901 6.0 678 2.2804 0.75
2.2683 7.0 791 2.2831 0.7
2.2695 8.0 904 2.2833 0.75
2.268 9.0 1017 2.2793 0.8
2.2836 10.0 1130 2.2867 0.68
2.2704 11.0 1243 2.2811 0.78
2.2665 12.0 1356 2.2783 0.83
2.2663 13.0 1469 2.2782 0.85
2.2669 14.0 1582 2.2759 0.88
2.266 15.0 1695 2.2800 0.82
2.266 16.0 1808 2.2797 0.82
2.266 17.0 1921 2.2778 0.84

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.1.0.dev20230627+cu121
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train derek-thomas/hubert-base-ls960-finetuned-gtzan-efficient-label-smoothed