vit-base-patch16-224-in21k-finetuned-crop-classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6450
  • Accuracy: 0.7472

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8031 1.0 183 0.7603 0.7050
0.7311 2.0 367 0.7047 0.7250
0.7144 3.0 550 0.6968 0.7211
0.6516 4.0 734 0.6569 0.7376
0.6371 5.0 917 0.6483 0.7376
0.6246 6.0 1101 0.6492 0.7365
0.5659 7.0 1284 0.6481 0.7411
0.533 8.0 1468 0.6450 0.7472
0.5416 9.0 1651 0.6382 0.7453
0.5062 9.97 1830 0.6395 0.7461

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
26
Safetensors
Model size
304M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for atuo/vit-base-patch16-224-in21k-finetuned-crop-classification

Finetuned
(1772)
this model

Evaluation results