Edit model card

sentiment-lora-r2a1d0.05-1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3638
  • Accuracy: 0.8446
  • Precision: 0.8193
  • Recall: 0.7951
  • F1: 0.8055

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5663 1.0 122 0.5216 0.7293 0.6677 0.6510 0.6572
0.5149 2.0 244 0.5134 0.7243 0.6758 0.6899 0.6810
0.4925 3.0 366 0.4821 0.7569 0.7055 0.6980 0.7014
0.4608 4.0 488 0.4654 0.7644 0.7150 0.7083 0.7114
0.4493 5.0 610 0.4600 0.7569 0.7126 0.7305 0.7193
0.4257 6.0 732 0.4307 0.7870 0.7433 0.7318 0.7369
0.4178 7.0 854 0.4181 0.7970 0.7552 0.7614 0.7581
0.3977 8.0 976 0.3972 0.8070 0.7687 0.7560 0.7617
0.3946 9.0 1098 0.3937 0.8145 0.7779 0.7663 0.7716
0.3762 10.0 1220 0.3874 0.8246 0.7995 0.7584 0.7738
0.3727 11.0 1342 0.3787 0.8321 0.8014 0.7837 0.7915
0.3626 12.0 1464 0.3750 0.8371 0.8059 0.7947 0.7999
0.359 13.0 1586 0.3728 0.8296 0.8066 0.7644 0.7803
0.3488 14.0 1708 0.3709 0.8296 0.8049 0.7669 0.7816
0.3445 15.0 1830 0.3667 0.8421 0.8131 0.7983 0.8050
0.3344 16.0 1952 0.3656 0.8421 0.8142 0.7958 0.8040
0.3339 17.0 2074 0.3654 0.8396 0.8128 0.7890 0.7992
0.3357 18.0 2196 0.3638 0.8421 0.8154 0.7933 0.8029
0.3357 19.0 2318 0.3646 0.8421 0.8154 0.7933 0.8029
0.3359 20.0 2440 0.3638 0.8446 0.8193 0.7951 0.8055

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for apwic/sentiment-lora-r2a1d0.05-1

Finetuned
(366)
this model