Edit model card

group3_non_all_zero

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0497
  • Precision: 0.0638
  • Recall: 0.2421
  • F1: 0.1009
  • Accuracy: 0.9339

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 55 1.1877 0.0140 0.25 0.0265 0.7339
No log 2.0 110 0.9789 0.0219 0.2041 0.0395 0.8081
No log 3.0 165 1.0274 0.0385 0.2437 0.0665 0.8703
No log 4.0 220 1.1138 0.0225 0.1820 0.0401 0.8343
No log 5.0 275 1.1690 0.0335 0.2184 0.0581 0.8702
No log 6.0 330 1.3425 0.0421 0.2310 0.0712 0.8972
No log 7.0 385 1.5089 0.0445 0.2342 0.0748 0.9079
No log 8.0 440 1.5614 0.0466 0.2453 0.0783 0.9119
No log 9.0 495 1.7200 0.0534 0.2453 0.0876 0.9220
0.5787 10.0 550 1.7086 0.0447 0.2453 0.0756 0.9098
0.5787 11.0 605 1.8784 0.0553 0.2342 0.0895 0.9263
0.5787 12.0 660 1.9659 0.0589 0.2421 0.0947 0.9299
0.5787 13.0 715 1.9472 0.0600 0.2437 0.0963 0.9297
0.5787 14.0 770 2.0058 0.0605 0.2373 0.0964 0.9310
0.5787 15.0 825 2.0497 0.0638 0.2421 0.1009 0.9339

Framework versions

  • Transformers 4.30.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.