mascir_fr_hubert_version1000

This model is a fine-tuned version of facebook/hubert-large-ls960-ft on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8026
  • Wer: 0.5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Wer
5.9386 2.0 500 2.9031 0.9856
2.0513 4.0 1000 1.0727 0.9144
1.0528 6.0 1500 0.7645 0.7567
0.7915 8.0 2000 0.6926 0.6744
0.6418 10.0 2500 0.6881 0.6633
0.5558 12.0 3000 0.6724 0.5978
0.4792 14.0 3500 0.6674 0.6011
0.4236 16.0 4000 0.6907 0.5778
0.3808 18.0 4500 0.7231 0.5444
0.3364 20.0 5000 0.7069 0.5456
0.3193 22.0 5500 0.7189 0.5456
0.2827 24.0 6000 0.7432 0.5322
0.2769 26.0 6500 0.7838 0.5656
0.2543 28.0 7000 0.8012 0.5333
0.2365 30.0 7500 0.8180 0.5178
0.2274 32.0 8000 0.7943 0.5233
0.2095 34.0 8500 0.7664 0.5222
0.2055 36.0 9000 0.7621 0.5122
0.2044 38.0 9500 0.7712 0.5056
0.1946 40.0 10000 0.7987 0.4989
0.1891 42.0 10500 0.7978 0.5044
0.1878 44.0 11000 0.7894 0.4967
0.1742 46.0 11500 0.7964 0.4944
0.1701 48.0 12000 0.7990 0.4956
0.163 50.0 12500 0.8026 0.5

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.3
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for StofEzz/mascir_fr_hubert_version1000

Finetuned
(22)
this model