Whisper Medium Tr

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1577
  • Wer: 11.4187

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • training_steps: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0027 4.4444 50 0.1648 10.0923
0.0011 8.8889 100 0.1786 12.0531
0.0001 13.3333 150 0.1590 11.3610
0.0 17.7778 200 0.1577 11.4187

Framework versions

  • Transformers 4.43.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for SahaRobotik/whisper-finetuned-2

Finetuned
(540)
this model

Dataset used to train SahaRobotik/whisper-finetuned-2

Evaluation results