output
This model is a fine-tuned version of IVN-RIN/bioBIT on the Rodrigo1771/drugtemist-it-9-ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0074
- Precision: 0.9191
- Recall: 0.9235
- F1: 0.9213
- Accuracy: 0.9986
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.9988 | 433 | 0.0050 | 0.9035 | 0.9061 | 0.9048 | 0.9984 |
0.0115 | 2.0 | 867 | 0.0045 | 0.8962 | 0.8945 | 0.8953 | 0.9984 |
0.0032 | 2.9988 | 1300 | 0.0061 | 0.9166 | 0.8935 | 0.9049 | 0.9982 |
0.002 | 4.0 | 1734 | 0.0066 | 0.8698 | 0.9245 | 0.8963 | 0.9981 |
0.0013 | 4.9988 | 2167 | 0.0059 | 0.9021 | 0.9371 | 0.9193 | 0.9985 |
0.0009 | 6.0 | 2601 | 0.0070 | 0.9315 | 0.8945 | 0.9126 | 0.9984 |
0.0005 | 6.9988 | 3034 | 0.0068 | 0.9158 | 0.9158 | 0.9158 | 0.9986 |
0.0005 | 8.0 | 3468 | 0.0074 | 0.9191 | 0.9235 | 0.9213 | 0.9986 |
0.0004 | 8.9988 | 3901 | 0.0077 | 0.9158 | 0.9264 | 0.9211 | 0.9986 |
0.0002 | 9.9885 | 4330 | 0.0077 | 0.9173 | 0.9235 | 0.9204 | 0.9986 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Rodrigo1771/bioBIT-drugtemist-it-word2vec-9-ner
Base model
IVN-RIN/bioBITDataset used to train Rodrigo1771/bioBIT-drugtemist-it-word2vec-9-ner
Evaluation results
- Precision on Rodrigo1771/drugtemist-it-9-nervalidation set self-reported0.919
- Recall on Rodrigo1771/drugtemist-it-9-nervalidation set self-reported0.924
- F1 on Rodrigo1771/drugtemist-it-9-nervalidation set self-reported0.921
- Accuracy on Rodrigo1771/drugtemist-it-9-nervalidation set self-reported0.999