metadata
library_name: transformers
base_model: IVN-RIN/bioBIT
tags:
- token-classification
- generated_from_trainer
datasets:
- Rodrigo1771/drugtemist-it-9-ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: output
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Rodrigo1771/drugtemist-it-9-ner
type: Rodrigo1771/drugtemist-it-9-ner
config: DrugTEMIST Italian NER
split: validation
args: DrugTEMIST Italian NER
metrics:
- name: Precision
type: precision
value: 0.9190751445086706
- name: Recall
type: recall
value: 0.9235237173281704
- name: F1
type: f1
value: 0.9212940608401738
- name: Accuracy
type: accuracy
value: 0.9985977668138146
output
This model is a fine-tuned version of IVN-RIN/bioBIT on the Rodrigo1771/drugtemist-it-9-ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0074
- Precision: 0.9191
- Recall: 0.9235
- F1: 0.9213
- Accuracy: 0.9986
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.9988 | 433 | 0.0050 | 0.9035 | 0.9061 | 0.9048 | 0.9984 |
0.0115 | 2.0 | 867 | 0.0045 | 0.8962 | 0.8945 | 0.8953 | 0.9984 |
0.0032 | 2.9988 | 1300 | 0.0061 | 0.9166 | 0.8935 | 0.9049 | 0.9982 |
0.002 | 4.0 | 1734 | 0.0066 | 0.8698 | 0.9245 | 0.8963 | 0.9981 |
0.0013 | 4.9988 | 2167 | 0.0059 | 0.9021 | 0.9371 | 0.9193 | 0.9985 |
0.0009 | 6.0 | 2601 | 0.0070 | 0.9315 | 0.8945 | 0.9126 | 0.9984 |
0.0005 | 6.9988 | 3034 | 0.0068 | 0.9158 | 0.9158 | 0.9158 | 0.9986 |
0.0005 | 8.0 | 3468 | 0.0074 | 0.9191 | 0.9235 | 0.9213 | 0.9986 |
0.0004 | 8.9988 | 3901 | 0.0077 | 0.9158 | 0.9264 | 0.9211 | 0.9986 |
0.0002 | 9.9885 | 4330 | 0.0077 | 0.9173 | 0.9235 | 0.9204 | 0.9986 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1