Rodrigo1771's picture
End of training
d6f1ff5 verified
metadata
library_name: transformers
base_model: IVN-RIN/bioBIT
tags:
  - token-classification
  - generated_from_trainer
datasets:
  - Rodrigo1771/drugtemist-it-9-ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: output
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: Rodrigo1771/drugtemist-it-9-ner
          type: Rodrigo1771/drugtemist-it-9-ner
          config: DrugTEMIST Italian NER
          split: validation
          args: DrugTEMIST Italian NER
        metrics:
          - name: Precision
            type: precision
            value: 0.9190751445086706
          - name: Recall
            type: recall
            value: 0.9235237173281704
          - name: F1
            type: f1
            value: 0.9212940608401738
          - name: Accuracy
            type: accuracy
            value: 0.9985977668138146

output

This model is a fine-tuned version of IVN-RIN/bioBIT on the Rodrigo1771/drugtemist-it-9-ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0074
  • Precision: 0.9191
  • Recall: 0.9235
  • F1: 0.9213
  • Accuracy: 0.9986

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9988 433 0.0050 0.9035 0.9061 0.9048 0.9984
0.0115 2.0 867 0.0045 0.8962 0.8945 0.8953 0.9984
0.0032 2.9988 1300 0.0061 0.9166 0.8935 0.9049 0.9982
0.002 4.0 1734 0.0066 0.8698 0.9245 0.8963 0.9981
0.0013 4.9988 2167 0.0059 0.9021 0.9371 0.9193 0.9985
0.0009 6.0 2601 0.0070 0.9315 0.8945 0.9126 0.9984
0.0005 6.9988 3034 0.0068 0.9158 0.9158 0.9158 0.9986
0.0005 8.0 3468 0.0074 0.9191 0.9235 0.9213 0.9986
0.0004 8.9988 3901 0.0077 0.9158 0.9264 0.9211 0.9986
0.0002 9.9885 4330 0.0077 0.9173 0.9235 0.9204 0.9986

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1