Edit model card

vit-base-patch16-224-finetuned-main-gpu-20e-final

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0297
  • Accuracy: 0.9912

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4852 1.0 551 0.4533 0.8042
0.3033 2.0 1102 0.2157 0.9157
0.2339 3.0 1653 0.1212 0.9534
0.1694 4.0 2204 0.1076 0.9603
0.1715 5.0 2755 0.0830 0.9692
0.1339 6.0 3306 0.0674 0.9762
0.1527 7.0 3857 0.0556 0.9791
0.1214 8.0 4408 0.0455 0.9832
0.1062 9.0 4959 0.0466 0.9829
0.0974 10.0 5510 0.0403 0.9849
0.0875 11.0 6061 0.0385 0.9860
0.0992 12.0 6612 0.0376 0.9870
0.065 13.0 7163 0.0392 0.9864
0.0775 14.0 7714 0.0344 0.9890
0.0544 15.0 8265 0.0362 0.9888
0.0584 16.0 8816 0.0422 0.9872
0.0722 17.0 9367 0.0314 0.9900
0.0765 18.0 9918 0.0313 0.9908
0.0696 19.0 10469 0.0297 0.9912
0.0596 20.0 11020 0.0285 0.9910

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results