Edit model card

beit-base-patch16-224-75-fold1

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2641
  • Accuracy: 0.9302

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 1.0987 0.3023
No log 2.0 4 0.6630 0.6977
No log 3.0 6 0.8342 0.6977
No log 4.0 8 0.6752 0.6977
0.7768 5.0 10 0.5408 0.7209
0.7768 6.0 12 0.7252 0.6977
0.7768 7.0 14 0.5609 0.7209
0.7768 8.0 16 0.7345 0.6977
0.7768 9.0 18 0.4614 0.7674
0.4249 10.0 20 0.4434 0.8372
0.4249 11.0 22 0.7552 0.7442
0.4249 12.0 24 0.4142 0.7674
0.4249 13.0 26 0.7183 0.7442
0.4249 14.0 28 0.5591 0.7907
0.3506 15.0 30 0.4363 0.6977
0.3506 16.0 32 0.5738 0.7907
0.3506 17.0 34 0.4286 0.8140
0.3506 18.0 36 0.4200 0.8140
0.3506 19.0 38 0.6514 0.7442
0.3434 20.0 40 0.4190 0.7907
0.3434 21.0 42 0.6220 0.8140
0.3434 22.0 44 0.6334 0.7907
0.3434 23.0 46 0.4487 0.8372
0.3434 24.0 48 0.4960 0.8605
0.2498 25.0 50 0.4179 0.8605
0.2498 26.0 52 0.3221 0.8605
0.2498 27.0 54 0.4776 0.8372
0.2498 28.0 56 0.5756 0.8605
0.2498 29.0 58 0.5444 0.8372
0.2461 30.0 60 0.3973 0.8605
0.2461 31.0 62 0.3672 0.8605
0.2461 32.0 64 0.4071 0.8837
0.2461 33.0 66 0.4678 0.7674
0.2461 34.0 68 0.2641 0.9302
0.2279 35.0 70 0.5551 0.8372
0.2279 36.0 72 0.2727 0.9302
0.2279 37.0 74 0.3312 0.8837
0.2279 38.0 76 0.7485 0.7907
0.2279 39.0 78 0.6407 0.8605
0.183 40.0 80 0.5420 0.8372
0.183 41.0 82 0.7364 0.8605
0.183 42.0 84 0.4141 0.8605
0.183 43.0 86 0.5461 0.7907
0.183 44.0 88 0.3438 0.8605
0.1658 45.0 90 0.3322 0.9302
0.1658 46.0 92 0.3463 0.9302
0.1658 47.0 94 0.6066 0.8605
0.1658 48.0 96 0.6259 0.8605
0.1658 49.0 98 0.4909 0.8372
0.1555 50.0 100 0.6022 0.7907
0.1555 51.0 102 0.5234 0.8372
0.1555 52.0 104 0.4164 0.8837
0.1555 53.0 106 0.3893 0.8605
0.1555 54.0 108 0.3774 0.8837
0.1487 55.0 110 0.7532 0.8372
0.1487 56.0 112 0.7141 0.8605
0.1487 57.0 114 0.4197 0.9070
0.1487 58.0 116 0.6816 0.7442
0.1487 59.0 118 0.5384 0.8140
0.1349 60.0 120 0.4971 0.8605
0.1349 61.0 122 0.4601 0.8837
0.1349 62.0 124 0.4740 0.8372
0.1349 63.0 126 0.5386 0.8140
0.1349 64.0 128 0.3376 0.9070
0.128 65.0 130 0.3905 0.9070
0.128 66.0 132 0.3841 0.9302
0.128 67.0 134 0.3567 0.8605
0.128 68.0 136 0.3985 0.8372
0.128 69.0 138 0.4165 0.8372
0.0875 70.0 140 0.4346 0.8605
0.0875 71.0 142 0.4497 0.8372
0.0875 72.0 144 0.4353 0.8837
0.0875 73.0 146 0.4276 0.8837
0.0875 74.0 148 0.4010 0.8837
0.0932 75.0 150 0.3958 0.9070
0.0932 76.0 152 0.3604 0.9070
0.0932 77.0 154 0.3427 0.8837
0.0932 78.0 156 0.3417 0.8837
0.0932 79.0 158 0.3438 0.9070
0.0943 80.0 160 0.3756 0.9302
0.0943 81.0 162 0.4077 0.9302
0.0943 82.0 164 0.4129 0.9302
0.0943 83.0 166 0.4304 0.9302
0.0943 84.0 168 0.4156 0.9302
0.0753 85.0 170 0.4088 0.9070
0.0753 86.0 172 0.4090 0.8837
0.0753 87.0 174 0.4076 0.9070
0.0753 88.0 176 0.4273 0.9070
0.0753 89.0 178 0.4367 0.9070
0.0846 90.0 180 0.4490 0.9070
0.0846 91.0 182 0.4448 0.8837
0.0846 92.0 184 0.4406 0.8837
0.0846 93.0 186 0.4393 0.8837
0.0846 94.0 188 0.4370 0.8837
0.0865 95.0 190 0.4330 0.8837
0.0865 96.0 192 0.4293 0.8837
0.0865 97.0 194 0.4240 0.8837
0.0865 98.0 196 0.4177 0.8837
0.0865 99.0 198 0.4144 0.8837
0.1019 100.0 200 0.4135 0.8837

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BilalMuftuoglu/beit-base-patch16-224-75-fold1

Finetuned
(286)
this model

Evaluation results