finetuned-mango-types

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5751
  • Accuracy: 0.9292

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9926 1.0 22 1.9526 0.3833
1.7976 2.0 44 1.7500 0.6083
1.5678 3.0 66 1.5025 0.7583
1.3907 4.0 88 1.2804 0.9
1.0873 5.0 110 1.1005 0.9042
0.9511 6.0 132 1.0130 0.8875
0.8476 7.0 154 0.9424 0.8833
0.7511 8.0 176 0.8325 0.9042
0.6985 9.0 198 0.7894 0.9083
0.6515 10.0 220 0.8052 0.8792
0.5775 11.0 242 0.7600 0.8792
0.5458 12.0 264 0.6684 0.925
0.5331 13.0 286 0.7148 0.8917
0.4823 14.0 308 0.6849 0.9125
0.4579 15.0 330 0.6414 0.9167
0.4435 16.0 352 0.6557 0.8833
0.4411 17.0 374 0.5968 0.9083
0.453 18.0 396 0.5751 0.9292
0.445 19.0 418 0.6035 0.9083
0.4357 20.0 440 0.6010 0.9083

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Amanaccessassist/finetuned-mango-types

Finetuned
(1824)
this model