TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

ricdomolm/lawma-8b - GGUF

This repo contains GGUF format model files for ricdomolm/lawma-8b.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Model file specification

Filename Quant type File Size Description
lawma-8b-Q2_K.gguf Q2_K 2.961 GB smallest, significant quality loss - not recommended for most purposes
lawma-8b-Q3_K_S.gguf Q3_K_S 3.413 GB very small, high quality loss
lawma-8b-Q3_K_M.gguf Q3_K_M 3.743 GB very small, high quality loss
lawma-8b-Q3_K_L.gguf Q3_K_L 4.025 GB small, substantial quality loss
lawma-8b-Q4_0.gguf Q4_0 4.341 GB legacy; small, very high quality loss - prefer using Q3_K_M
lawma-8b-Q4_K_S.gguf Q4_K_S 4.370 GB small, greater quality loss
lawma-8b-Q4_K_M.gguf Q4_K_M 4.583 GB medium, balanced quality - recommended
lawma-8b-Q5_0.gguf Q5_0 5.215 GB legacy; medium, balanced quality - prefer using Q4_K_M
lawma-8b-Q5_K_S.gguf Q5_K_S 5.215 GB large, low quality loss - recommended
lawma-8b-Q5_K_M.gguf Q5_K_M 5.339 GB large, very low quality loss - recommended
lawma-8b-Q6_K.gguf Q6_K 6.143 GB very large, extremely low quality loss
lawma-8b-Q8_0.gguf Q8_0 7.954 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/lawma-8b-GGUF --include "lawma-8b-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/lawma-8b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
17
GGUF
Model size
8.03B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .

Model tree for tensorblock/lawma-8b-GGUF

Base model

ricdomolm/lawma-8b
Quantized
(3)
this model

Dataset used to train tensorblock/lawma-8b-GGUF