Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
cloudyu/Yi-34Bx2-MoE-60B-DPO - GGUF
This repo contains GGUF format model files for cloudyu/Yi-34Bx2-MoE-60B-DPO.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
[INST] <<SYS>>
{system_prompt}
<</SYS>>
{prompt} [/INST]
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Yi-34Bx2-MoE-60B-DPO-Q2_K.gguf | Q2_K | 22.394 GB | smallest, significant quality loss - not recommended for most purposes |
Yi-34Bx2-MoE-60B-DPO-Q3_K_S.gguf | Q3_K_S | 26.318 GB | very small, high quality loss |
Yi-34Bx2-MoE-60B-DPO-Q3_K_M.gguf | Q3_K_M | 29.237 GB | very small, high quality loss |
Yi-34Bx2-MoE-60B-DPO-Q3_K_L.gguf | Q3_K_L | 31.768 GB | small, substantial quality loss |
Yi-34Bx2-MoE-60B-DPO-Q4_0.gguf | Q4_0 | 34.334 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Yi-34Bx2-MoE-60B-DPO-Q4_K_S.gguf | Q4_K_S | 34.594 GB | small, greater quality loss |
Yi-34Bx2-MoE-60B-DPO-Q4_K_M.gguf | Q4_K_M | 36.661 GB | medium, balanced quality - recommended |
Yi-34Bx2-MoE-60B-DPO-Q5_0.gguf | Q5_0 | 41.878 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Yi-34Bx2-MoE-60B-DPO-Q5_K_S.gguf | Q5_K_S | 41.878 GB | large, low quality loss - recommended |
Yi-34Bx2-MoE-60B-DPO-Q5_K_M.gguf | Q5_K_M | 43.077 GB | large, very low quality loss - recommended |
Yi-34Bx2-MoE-60B-DPO-Q6_K.gguf | Q6_K | 49.893 GB | very large, extremely low quality loss |
Yi-34Bx2-MoE-60B-DPO-Q8_0 | Q8_0 | 64.621 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Yi-34Bx2-MoE-60B-DPO-GGUF --include "Yi-34Bx2-MoE-60B-DPO-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Yi-34Bx2-MoE-60B-DPO-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
- Downloads last month
- 6
Model tree for tensorblock/Yi-34Bx2-MoE-60B-DPO-GGUF
Base model
cloudyu/Yi-34Bx2-MoE-60B-DPOEvaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard53.190
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard31.260
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard6.190
- acc_norm on GPQA (0-shot)Open LLM Leaderboard9.620
- acc_norm on MuSR (0-shot)Open LLM Leaderboard14.320
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard40.850