TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

NeuralTofu/Phi-3-mini-128k-instruct-ft-v2 - GGUF

This repo contains GGUF format model files for NeuralTofu/Phi-3-mini-128k-instruct-ft-v2.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template

{system_prompt}
{prompt}

Model file specification

Filename Quant type File Size Description
Phi-3-mini-128k-instruct-ft-v2-Q2_K.gguf Q2_K 1.416 GB smallest, significant quality loss - not recommended for most purposes
Phi-3-mini-128k-instruct-ft-v2-Q3_K_S.gguf Q3_K_S 1.682 GB very small, high quality loss
Phi-3-mini-128k-instruct-ft-v2-Q3_K_M.gguf Q3_K_M 1.955 GB very small, high quality loss
Phi-3-mini-128k-instruct-ft-v2-Q3_K_L.gguf Q3_K_L 2.088 GB small, substantial quality loss
Phi-3-mini-128k-instruct-ft-v2-Q4_0.gguf Q4_0 2.176 GB legacy; small, very high quality loss - prefer using Q3_K_M
Phi-3-mini-128k-instruct-ft-v2-Q4_K_S.gguf Q4_K_S 2.189 GB small, greater quality loss
Phi-3-mini-128k-instruct-ft-v2-Q4_K_M.gguf Q4_K_M 2.393 GB medium, balanced quality - recommended
Phi-3-mini-128k-instruct-ft-v2-Q5_0.gguf Q5_0 2.641 GB legacy; medium, balanced quality - prefer using Q4_K_M
Phi-3-mini-128k-instruct-ft-v2-Q5_K_S.gguf Q5_K_S 2.641 GB large, low quality loss - recommended
Phi-3-mini-128k-instruct-ft-v2-Q5_K_M.gguf Q5_K_M 2.815 GB large, very low quality loss - recommended
Phi-3-mini-128k-instruct-ft-v2-Q6_K.gguf Q6_K 3.136 GB very large, extremely low quality loss
Phi-3-mini-128k-instruct-ft-v2-Q8_0.gguf Q8_0 4.061 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Phi-3-mini-128k-instruct-ft-v2-GGUF --include "Phi-3-mini-128k-instruct-ft-v2-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Phi-3-mini-128k-instruct-ft-v2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
110
GGUF
Model size
3.82B params
Architecture
phi3

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tensorblock/Phi-3-mini-128k-instruct-ft-v2-GGUF

Quantized
(3)
this model