Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: Xenova/tiny-random-Phi3ForCausalLM
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: /workspace/input_data/b66e33ce103e5a1b_train_data.json
  format: custom
  type:
    system_prompt: ''
    system_format: '{system}'
    field_instruction: task
    field_input: reason
    field_output: answer
    no_input_format: '{instruction}'
    format: '{instruction} {input}'
  ds_type: json
  data_files:
  - b66e33ce103e5a1b_train_data.json
dataset_prepared_path: null
val_set_size: 0.05
output_dir: miner_id_cef1a911-72d9-4a3c-91e9-d5ce72542066
sequence_len: 4056
sample_packing: false
pad_to_sequence_len: true
trust_remote_code: true
adapter: lora
lora_model_dir: null
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out: null
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: null
tf32: false
gradient_checkpointing: false
early_stopping_patience: null
resume_from_checkpoint: null
local_rank: null
logging_steps: 1
xformers_attention: null
flash_attention: true
s2_attention: null
wandb_project: Gradients-On-Demand
wandb_entity: prongsie
wandb_mode: online
wandb_run: your_name
wandb_runid: default
hub_model_id: tensor24/miner_id_cef1a911-72d9-4a3c-91e9-d5ce72542066
hub_repo: tensor24/miner_id_cef1a911-72d9-4a3c-91e9-d5ce72542066
hub_strategy: checkpoint
hub_token: null
saves_per_epoch: 4
warmup_steps: 10
evals_per_epoch: 4
eval_table_size: null
eval_max_new_tokens: 128
max_steps: 10
debug: null
deepspeed: null
weight_decay: 0.0
fsdp: null
fsdp_config: null
tokenizer_config: Xenova/tiny-random-Phi3ForCausalLM
mlflow_experiment_name: /tmp/b66e33ce103e5a1b_train_data.json

miner_id_cef1a911-72d9-4a3c-91e9-d5ce72542066

This model is a fine-tuned version of Xenova/tiny-random-Phi3ForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 10

Training results

Training Loss Epoch Step Validation Loss
10.3679 0.0111 1 10.3734
10.3604 0.0332 3 10.3733
10.3802 0.0665 6 10.3727
10.3862 0.0997 9 10.3717

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for tensor24/miner_id_cef1a911-72d9-4a3c-91e9-d5ce72542066

Adapter
(309)
this model