Upload 2 files
Browse files- configuration_tanuki.py +169 -0
- modeling_tanuki.py +1759 -0
configuration_tanuki.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mixtral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tanuki model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
class TanukiConfig(PretrainedConfig):
|
25 |
+
r"""
|
26 |
+
This is the configuration class to store the configuration of a [`TanukiModel`]. It is used to instantiate an
|
27 |
+
Tanuki model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
28 |
+
with the defaults will yield a similar configuration to that of the Tanuki-7B-v0.1 or Tanuki-7B-Instruct-v0.1.
|
29 |
+
|
30 |
+
[mixtralai/Tanuki-8x7B](https://huggingface.co/mixtralai/Tanuki-8x7B)
|
31 |
+
[mixtralai/Tanuki-7B-Instruct-v0.1](https://huggingface.co/mixtralai/Tanuki-7B-Instruct-v0.1)
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
39 |
+
Vocabulary size of the Tanuki model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`TanukiModel`]
|
41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
42 |
+
Dimension of the hidden representations.
|
43 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
44 |
+
Dimension of the MLP representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer encoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
52 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
54 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
55 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
56 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
57 |
+
The non-linear activation function (function or string) in the decoder.
|
58 |
+
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
59 |
+
The maximum sequence length that this model might ever be used with. Tanuki's sliding window attention
|
60 |
+
allows sequence of up to 4096*32 tokens.
|
61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
63 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
64 |
+
The epsilon used by the rms normalization layers.
|
65 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
67 |
+
relevant if `config.is_decoder=True`.
|
68 |
+
pad_token_id (`int`, *optional*):
|
69 |
+
The id of the padding token.
|
70 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
71 |
+
The id of the "beginning-of-sequence" token.
|
72 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
73 |
+
The id of the "end-of-sequence" token.
|
74 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
75 |
+
Whether the model's input and output word embeddings should be tied.
|
76 |
+
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
77 |
+
The base period of the RoPE embeddings.
|
78 |
+
sliding_window (`int`, *optional*):
|
79 |
+
Sliding window attention window size. If not specified, will default to `4096`.
|
80 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
81 |
+
The dropout ratio for the attention probabilities.
|
82 |
+
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
83 |
+
The number of experts to route per-token, can be also interpreted as the `top-k` routing
|
84 |
+
parameter
|
85 |
+
num_local_experts (`int`, *optional*, defaults to 8):
|
86 |
+
Number of experts per Sparse MLP layer.
|
87 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
88 |
+
Whether or not the router logits should be returned by the model. Enabeling this will also
|
89 |
+
allow the model to output the auxiliary loss. See [here]() for more details
|
90 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
91 |
+
The aux loss factor for the total loss.
|
92 |
+
router_jitter_noise (`float`, *optional*, defaults to 0.0):
|
93 |
+
Amount of noise to add to the router.
|
94 |
+
|
95 |
+
```python
|
96 |
+
>>> from transformers import TanukiModel, TanukiConfig
|
97 |
+
|
98 |
+
>>> # Initializing a Tanuki 7B style configuration
|
99 |
+
>>> configuration = TanukiConfig()
|
100 |
+
|
101 |
+
>>> # Initializing a model from the Tanuki 7B style configuration
|
102 |
+
>>> model = TanukiModel(configuration)
|
103 |
+
|
104 |
+
>>> # Accessing the model configuration
|
105 |
+
>>> configuration = model.config
|
106 |
+
```"""
|
107 |
+
|
108 |
+
model_type = "Tanuki"
|
109 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_size=32000,
|
114 |
+
hidden_size=4096,
|
115 |
+
intermediate_size=14336,
|
116 |
+
num_hidden_layers=32,
|
117 |
+
num_attention_heads=32,
|
118 |
+
num_key_value_heads=8,
|
119 |
+
hidden_act="silu",
|
120 |
+
max_position_embeddings=4096,
|
121 |
+
initializer_range=0.02,
|
122 |
+
rms_norm_eps=1e-5,
|
123 |
+
use_cache=True,
|
124 |
+
pad_token_id=None,
|
125 |
+
bos_token_id=1,
|
126 |
+
eos_token_id=2,
|
127 |
+
tie_word_embeddings=False,
|
128 |
+
rope_theta=500000.0,
|
129 |
+
sliding_window=None,
|
130 |
+
attention_dropout=0.0,
|
131 |
+
num_experts_per_tok=2,
|
132 |
+
num_local_experts=8,
|
133 |
+
output_router_logits=False,
|
134 |
+
router_aux_loss_coef=0.001,
|
135 |
+
router_jitter_noise=0.0,
|
136 |
+
**kwargs,
|
137 |
+
):
|
138 |
+
self.vocab_size = vocab_size
|
139 |
+
self.max_position_embeddings = max_position_embeddings
|
140 |
+
self.hidden_size = hidden_size
|
141 |
+
self.intermediate_size = intermediate_size
|
142 |
+
self.num_hidden_layers = num_hidden_layers
|
143 |
+
self.num_attention_heads = num_attention_heads
|
144 |
+
self.sliding_window = sliding_window
|
145 |
+
|
146 |
+
# for backward compatibility
|
147 |
+
if num_key_value_heads is None:
|
148 |
+
num_key_value_heads = num_attention_heads
|
149 |
+
|
150 |
+
self.num_key_value_heads = num_key_value_heads
|
151 |
+
self.hidden_act = hidden_act
|
152 |
+
self.initializer_range = initializer_range
|
153 |
+
self.rms_norm_eps = rms_norm_eps
|
154 |
+
self.use_cache = use_cache
|
155 |
+
self.rope_theta = rope_theta
|
156 |
+
self.attention_dropout = attention_dropout
|
157 |
+
|
158 |
+
self.num_experts_per_tok = num_experts_per_tok
|
159 |
+
self.num_local_experts = num_local_experts
|
160 |
+
self.output_router_logits = output_router_logits
|
161 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
162 |
+
self.router_jitter_noise = router_jitter_noise
|
163 |
+
super().__init__(
|
164 |
+
pad_token_id=pad_token_id,
|
165 |
+
bos_token_id=bos_token_id,
|
166 |
+
eos_token_id=eos_token_id,
|
167 |
+
tie_word_embeddings=tie_word_embeddings,
|
168 |
+
**kwargs,
|
169 |
+
)
|
modeling_tanuki.py
ADDED
@@ -0,0 +1,1759 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""PyTorch Tanuki model."""
|
21 |
+
|
22 |
+
import inspect
|
23 |
+
import math
|
24 |
+
from typing import List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
34 |
+
from transformers.modeling_attn_mask_utils import (
|
35 |
+
AttentionMaskConverter,
|
36 |
+
_prepare_4d_causal_attention_mask,
|
37 |
+
)
|
38 |
+
from transformers.modeling_outputs import (
|
39 |
+
MoeCausalLMOutputWithPast,
|
40 |
+
MoeModelOutputWithPast,
|
41 |
+
SequenceClassifierOutputWithPast,
|
42 |
+
TokenClassifierOutput,
|
43 |
+
)
|
44 |
+
from transformers.modeling_utils import PreTrainedModel
|
45 |
+
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13
|
46 |
+
from transformers.utils import (
|
47 |
+
add_start_docstrings,
|
48 |
+
add_start_docstrings_to_model_forward,
|
49 |
+
is_flash_attn_2_available,
|
50 |
+
is_flash_attn_greater_or_equal_2_10,
|
51 |
+
logging,
|
52 |
+
replace_return_docstrings,
|
53 |
+
)
|
54 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
55 |
+
from .configuration_tanuki import TanukiConfig
|
56 |
+
|
57 |
+
|
58 |
+
if is_flash_attn_2_available():
|
59 |
+
#from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
60 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
61 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
62 |
+
|
63 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
64 |
+
|
65 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
66 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
67 |
+
if is_torch_fx_available():
|
68 |
+
if not is_torch_greater_or_equal_than_1_13:
|
69 |
+
import torch.fx
|
70 |
+
|
71 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
72 |
+
|
73 |
+
|
74 |
+
logger = logging.get_logger(__name__)
|
75 |
+
|
76 |
+
_CONFIG_FOR_DOC = "TanukiConfig"
|
77 |
+
|
78 |
+
|
79 |
+
def load_balancing_loss_func(
|
80 |
+
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
|
81 |
+
) -> float:
|
82 |
+
r"""
|
83 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
84 |
+
|
85 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
86 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
87 |
+
experts is too unbalanced.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
91 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
92 |
+
shape [batch_size X sequence_length, num_experts].
|
93 |
+
attention_mask (`torch.Tensor`, None):
|
94 |
+
The attention_mask used in forward function
|
95 |
+
shape [batch_size X sequence_length] if not None.
|
96 |
+
num_experts (`int`, *optional*):
|
97 |
+
Number of experts
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
The auxiliary loss.
|
101 |
+
"""
|
102 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
103 |
+
return 0
|
104 |
+
|
105 |
+
if isinstance(gate_logits, tuple):
|
106 |
+
compute_device = gate_logits[0].device
|
107 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
108 |
+
|
109 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
110 |
+
|
111 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
112 |
+
|
113 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
114 |
+
|
115 |
+
if attention_mask is None:
|
116 |
+
# Compute the percentage of tokens routed to each experts
|
117 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
118 |
+
|
119 |
+
# Compute the average probability of routing to these experts
|
120 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
121 |
+
else:
|
122 |
+
batch_size, sequence_length = attention_mask.shape
|
123 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
124 |
+
|
125 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
126 |
+
expert_attention_mask = (
|
127 |
+
attention_mask[None, :, :, None, None]
|
128 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
129 |
+
.reshape(-1, top_k, num_experts)
|
130 |
+
.to(compute_device)
|
131 |
+
)
|
132 |
+
|
133 |
+
# Compute the percentage of tokens routed to each experts
|
134 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
135 |
+
expert_attention_mask, dim=0
|
136 |
+
)
|
137 |
+
|
138 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
139 |
+
router_per_expert_attention_mask = (
|
140 |
+
attention_mask[None, :, :, None]
|
141 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
142 |
+
.reshape(-1, num_experts)
|
143 |
+
.to(compute_device)
|
144 |
+
)
|
145 |
+
|
146 |
+
# Compute the average probability of routing to these experts
|
147 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
148 |
+
router_per_expert_attention_mask, dim=0
|
149 |
+
)
|
150 |
+
|
151 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
152 |
+
return overall_loss * num_experts
|
153 |
+
|
154 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
155 |
+
def _get_unpad_data(attention_mask):
|
156 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
157 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
158 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
159 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
160 |
+
return (
|
161 |
+
indices,
|
162 |
+
cu_seqlens,
|
163 |
+
max_seqlen_in_batch,
|
164 |
+
)
|
165 |
+
|
166 |
+
|
167 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mixtral
|
168 |
+
class TanukiRMSNorm(nn.Module):
|
169 |
+
def __init__(self, hidden_size, eps=1e-6):
|
170 |
+
"""
|
171 |
+
TanukiRMSNorm is equivalent to T5LayerNorm
|
172 |
+
"""
|
173 |
+
super().__init__()
|
174 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
175 |
+
self.variance_epsilon = eps
|
176 |
+
|
177 |
+
def forward(self, hidden_states):
|
178 |
+
input_dtype = hidden_states.dtype
|
179 |
+
hidden_states = hidden_states.to(torch.float32)
|
180 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
181 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
182 |
+
return self.weight * hidden_states.to(input_dtype)
|
183 |
+
|
184 |
+
|
185 |
+
# copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Mixtral
|
186 |
+
# TODO @longjie no longer copied from Mistral after static cache
|
187 |
+
class TanukiRotaryEmbedding(nn.Module):
|
188 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
189 |
+
super().__init__()
|
190 |
+
|
191 |
+
self.dim = dim
|
192 |
+
self.max_position_embeddings = max_position_embeddings
|
193 |
+
self.base = base
|
194 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
195 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
196 |
+
|
197 |
+
# Build here to make `torch.jit.trace` work.
|
198 |
+
self._set_cos_sin_cache(
|
199 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
200 |
+
)
|
201 |
+
|
202 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
203 |
+
self.max_seq_len_cached = seq_len
|
204 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
205 |
+
|
206 |
+
freqs = torch.outer(t, self.inv_freq)
|
207 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
208 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
209 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
210 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
211 |
+
|
212 |
+
def forward(self, x, seq_len=None):
|
213 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
214 |
+
if seq_len > self.max_seq_len_cached:
|
215 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
216 |
+
|
217 |
+
return (
|
218 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
219 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
220 |
+
)
|
221 |
+
|
222 |
+
|
223 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
224 |
+
def rotate_half(x):
|
225 |
+
"""Rotates half the hidden dims of the input."""
|
226 |
+
x1 = x[..., : x.shape[-1] // 2]
|
227 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
228 |
+
return torch.cat((-x2, x1), dim=-1)
|
229 |
+
|
230 |
+
|
231 |
+
# copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
232 |
+
# TODO @longjie no longer copied from Mistral after static cache
|
233 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
234 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
235 |
+
|
236 |
+
Args:
|
237 |
+
q (`torch.Tensor`): The query tensor.
|
238 |
+
k (`torch.Tensor`): The key tensor.
|
239 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
240 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
241 |
+
position_ids (`torch.Tensor`):
|
242 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
243 |
+
used to pass offsetted position ids when working with a KV-cache.
|
244 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
245 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
246 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
247 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
248 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
249 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
250 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
251 |
+
Returns:
|
252 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
253 |
+
"""
|
254 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
255 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
256 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
257 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
258 |
+
return q_embed, k_embed
|
259 |
+
|
260 |
+
|
261 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
262 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
263 |
+
"""
|
264 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
265 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
266 |
+
"""
|
267 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
268 |
+
if n_rep == 1:
|
269 |
+
return hidden_states
|
270 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
271 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
272 |
+
|
273 |
+
|
274 |
+
# copied from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Mixtral
|
275 |
+
# TODO @longjie no longer copied from Mistral after static cache
|
276 |
+
class TanukiAttention(nn.Module):
|
277 |
+
"""
|
278 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
279 |
+
and "Generating Long Sequences with Sparse Transformers".
|
280 |
+
"""
|
281 |
+
|
282 |
+
def __init__(self, config: TanukiConfig, layer_idx: Optional[int] = None):
|
283 |
+
super().__init__()
|
284 |
+
self.config = config
|
285 |
+
self.layer_idx = layer_idx
|
286 |
+
if layer_idx is None:
|
287 |
+
logger.warning_once(
|
288 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
289 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
290 |
+
"when creating this class."
|
291 |
+
)
|
292 |
+
|
293 |
+
self.hidden_size = config.hidden_size
|
294 |
+
self.num_heads = config.num_attention_heads
|
295 |
+
self.head_dim = self.hidden_size // self.num_heads
|
296 |
+
self.num_key_value_heads = config.num_key_value_heads
|
297 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
298 |
+
self.max_position_embeddings = config.max_position_embeddings
|
299 |
+
self.rope_theta = config.rope_theta
|
300 |
+
self.is_causal = True
|
301 |
+
self.attention_dropout = config.attention_dropout
|
302 |
+
|
303 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
304 |
+
raise ValueError(
|
305 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
306 |
+
f" and `num_heads`: {self.num_heads})."
|
307 |
+
)
|
308 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
309 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
310 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
311 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
312 |
+
|
313 |
+
self.rotary_emb = TanukiRotaryEmbedding(
|
314 |
+
self.head_dim,
|
315 |
+
max_position_embeddings=self.max_position_embeddings,
|
316 |
+
base=self.rope_theta,
|
317 |
+
)
|
318 |
+
|
319 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
320 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
321 |
+
|
322 |
+
def forward(
|
323 |
+
self,
|
324 |
+
hidden_states: torch.Tensor,
|
325 |
+
attention_mask: Optional[torch.Tensor] = None,
|
326 |
+
position_ids: Optional[torch.LongTensor] = None,
|
327 |
+
past_key_value: Optional[Cache] = None,
|
328 |
+
output_attentions: bool = False,
|
329 |
+
use_cache: bool = False,
|
330 |
+
cache_position: Optional[torch.LongTensor] = None,
|
331 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
332 |
+
bsz, q_len, _ = hidden_states.size()
|
333 |
+
|
334 |
+
query_states = self.q_proj(hidden_states)
|
335 |
+
key_states = self.k_proj(hidden_states)
|
336 |
+
value_states = self.v_proj(hidden_states)
|
337 |
+
|
338 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
339 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
340 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
341 |
+
|
342 |
+
kv_seq_len = key_states.shape[-2]
|
343 |
+
if past_key_value is not None:
|
344 |
+
if self.layer_idx is None:
|
345 |
+
raise ValueError(
|
346 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
347 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
348 |
+
"with a layer index."
|
349 |
+
)
|
350 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
351 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
352 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
353 |
+
|
354 |
+
if past_key_value is not None:
|
355 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
356 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
357 |
+
|
358 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
359 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
360 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
361 |
+
|
362 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
363 |
+
|
364 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
365 |
+
raise ValueError(
|
366 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
367 |
+
f" {attn_weights.size()}"
|
368 |
+
)
|
369 |
+
|
370 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
371 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
372 |
+
attn_weights = attn_weights + causal_mask
|
373 |
+
|
374 |
+
# upcast attention to fp32
|
375 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
376 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
377 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
378 |
+
|
379 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
380 |
+
raise ValueError(
|
381 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
382 |
+
f" {attn_output.size()}"
|
383 |
+
)
|
384 |
+
|
385 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
386 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
387 |
+
|
388 |
+
attn_output = self.o_proj(attn_output)
|
389 |
+
|
390 |
+
if not output_attentions:
|
391 |
+
attn_weights = None
|
392 |
+
|
393 |
+
return attn_output, attn_weights, past_key_value
|
394 |
+
|
395 |
+
|
396 |
+
# copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Mixtral
|
397 |
+
# TODO @longjie no longer copied from Mistral after static cache
|
398 |
+
class TanukiFlashAttention2(TanukiAttention):
|
399 |
+
"""
|
400 |
+
Tanuki flash attention module. This module inherits from `TanukiAttention` as the weights of the module stays
|
401 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
402 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
403 |
+
"""
|
404 |
+
|
405 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
406 |
+
def __init__(self, *args, **kwargs):
|
407 |
+
super().__init__(*args, **kwargs)
|
408 |
+
|
409 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
410 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
411 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
412 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
413 |
+
|
414 |
+
def forward(
|
415 |
+
self,
|
416 |
+
hidden_states: torch.Tensor,
|
417 |
+
attention_mask: Optional[torch.Tensor] = None,
|
418 |
+
position_ids: Optional[torch.LongTensor] = None,
|
419 |
+
past_key_value: Optional[Cache] = None,
|
420 |
+
output_attentions: bool = False,
|
421 |
+
use_cache: bool = False,
|
422 |
+
cache_position: Optional[torch.LongTensor] = None,
|
423 |
+
):
|
424 |
+
bsz, q_len, _ = hidden_states.size()
|
425 |
+
|
426 |
+
query_states = self.q_proj(hidden_states)
|
427 |
+
key_states = self.k_proj(hidden_states)
|
428 |
+
value_states = self.v_proj(hidden_states)
|
429 |
+
|
430 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
431 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
432 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
433 |
+
|
434 |
+
kv_seq_len = key_states.shape[-2]
|
435 |
+
if past_key_value is not None:
|
436 |
+
if self.layer_idx is None:
|
437 |
+
raise ValueError(
|
438 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
439 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
440 |
+
"with a layer index."
|
441 |
+
)
|
442 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
443 |
+
|
444 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
445 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
446 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
447 |
+
|
448 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
449 |
+
|
450 |
+
use_sliding_windows = (
|
451 |
+
_flash_supports_window_size
|
452 |
+
and getattr(self.config, "sliding_window", None) is not None
|
453 |
+
and kv_seq_len > self.config.sliding_window
|
454 |
+
)
|
455 |
+
|
456 |
+
if not _flash_supports_window_size:
|
457 |
+
logger.warning_once(
|
458 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
459 |
+
" make sure to upgrade flash-attn library."
|
460 |
+
)
|
461 |
+
|
462 |
+
if past_key_value is not None:
|
463 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
464 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
465 |
+
if (
|
466 |
+
getattr(self.config, "sliding_window", None) is not None
|
467 |
+
and kv_seq_len > self.config.sliding_window
|
468 |
+
and cache_has_contents
|
469 |
+
):
|
470 |
+
slicing_tokens = 1 - self.config.sliding_window
|
471 |
+
|
472 |
+
past_key = past_key_value[self.layer_idx][0]
|
473 |
+
past_value = past_key_value[self.layer_idx][1]
|
474 |
+
|
475 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
476 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
477 |
+
|
478 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
479 |
+
raise ValueError(
|
480 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
481 |
+
f" {past_key.shape}"
|
482 |
+
)
|
483 |
+
|
484 |
+
if attention_mask is not None:
|
485 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
486 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
487 |
+
|
488 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
489 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
490 |
+
|
491 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
492 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
493 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
494 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
495 |
+
|
496 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
497 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
498 |
+
# cast them back in float16 just to be sure everything works as expected.
|
499 |
+
input_dtype = query_states.dtype
|
500 |
+
if input_dtype == torch.float32:
|
501 |
+
if torch.is_autocast_enabled():
|
502 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
503 |
+
# Handle the case where the model is quantized
|
504 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
505 |
+
target_dtype = self.config._pre_quantization_dtype
|
506 |
+
else:
|
507 |
+
target_dtype = self.q_proj.weight.dtype
|
508 |
+
|
509 |
+
logger.warning_once(
|
510 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
511 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
512 |
+
f" {target_dtype}."
|
513 |
+
)
|
514 |
+
|
515 |
+
query_states = query_states.to(target_dtype)
|
516 |
+
key_states = key_states.to(target_dtype)
|
517 |
+
value_states = value_states.to(target_dtype)
|
518 |
+
|
519 |
+
# Reashape to the expected shape for Flash Attention
|
520 |
+
query_states = query_states.transpose(1, 2)
|
521 |
+
key_states = key_states.transpose(1, 2)
|
522 |
+
value_states = value_states.transpose(1, 2)
|
523 |
+
|
524 |
+
attn_output = self._flash_attention_forward(
|
525 |
+
query_states,
|
526 |
+
key_states,
|
527 |
+
value_states,
|
528 |
+
attention_mask,
|
529 |
+
q_len,
|
530 |
+
dropout=dropout_rate,
|
531 |
+
use_sliding_windows=use_sliding_windows,
|
532 |
+
)
|
533 |
+
|
534 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
535 |
+
attn_output = self.o_proj(attn_output)
|
536 |
+
|
537 |
+
if not output_attentions:
|
538 |
+
attn_weights = None
|
539 |
+
|
540 |
+
return attn_output, attn_weights, past_key_value
|
541 |
+
|
542 |
+
def _flash_attention_forward(
|
543 |
+
self,
|
544 |
+
query_states,
|
545 |
+
key_states,
|
546 |
+
value_states,
|
547 |
+
attention_mask,
|
548 |
+
query_length,
|
549 |
+
dropout=0.0,
|
550 |
+
softmax_scale=None,
|
551 |
+
use_sliding_windows=False,
|
552 |
+
):
|
553 |
+
"""
|
554 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
555 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
556 |
+
|
557 |
+
Args:
|
558 |
+
query_states (`torch.Tensor`):
|
559 |
+
Input query states to be passed to Flash Attention API
|
560 |
+
key_states (`torch.Tensor`):
|
561 |
+
Input key states to be passed to Flash Attention API
|
562 |
+
value_states (`torch.Tensor`):
|
563 |
+
Input value states to be passed to Flash Attention API
|
564 |
+
attention_mask (`torch.Tensor`):
|
565 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
566 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
567 |
+
dropout (`float`):
|
568 |
+
Attention dropout
|
569 |
+
softmax_scale (`float`, *optional*):
|
570 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
571 |
+
use_sliding_windows (`bool`, *optional*):
|
572 |
+
Whether to activate sliding window attention.
|
573 |
+
"""
|
574 |
+
if not self._flash_attn_uses_top_left_mask:
|
575 |
+
causal = self.is_causal
|
576 |
+
else:
|
577 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
578 |
+
causal = self.is_causal and query_length != 1
|
579 |
+
|
580 |
+
# Contains at least one padding token in the sequence
|
581 |
+
if attention_mask is not None:
|
582 |
+
batch_size = query_states.shape[0]
|
583 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
584 |
+
query_states, key_states, value_states, attention_mask, query_length
|
585 |
+
)
|
586 |
+
|
587 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
588 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
589 |
+
|
590 |
+
if not use_sliding_windows:
|
591 |
+
attn_output_unpad = flash_attn_varlen_func(
|
592 |
+
query_states,
|
593 |
+
key_states,
|
594 |
+
value_states,
|
595 |
+
cu_seqlens_q=cu_seqlens_q,
|
596 |
+
cu_seqlens_k=cu_seqlens_k,
|
597 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
598 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
599 |
+
dropout_p=dropout,
|
600 |
+
softmax_scale=softmax_scale,
|
601 |
+
causal=causal,
|
602 |
+
)
|
603 |
+
else:
|
604 |
+
attn_output_unpad = flash_attn_varlen_func(
|
605 |
+
query_states,
|
606 |
+
key_states,
|
607 |
+
value_states,
|
608 |
+
cu_seqlens_q=cu_seqlens_q,
|
609 |
+
cu_seqlens_k=cu_seqlens_k,
|
610 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
611 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
612 |
+
dropout_p=dropout,
|
613 |
+
softmax_scale=softmax_scale,
|
614 |
+
causal=causal,
|
615 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
616 |
+
)
|
617 |
+
|
618 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
619 |
+
else:
|
620 |
+
if not use_sliding_windows:
|
621 |
+
attn_output = flash_attn_func(
|
622 |
+
query_states,
|
623 |
+
key_states,
|
624 |
+
value_states,
|
625 |
+
dropout,
|
626 |
+
softmax_scale=softmax_scale,
|
627 |
+
causal=causal,
|
628 |
+
)
|
629 |
+
else:
|
630 |
+
attn_output = flash_attn_func(
|
631 |
+
query_states,
|
632 |
+
key_states,
|
633 |
+
value_states,
|
634 |
+
dropout,
|
635 |
+
softmax_scale=softmax_scale,
|
636 |
+
causal=causal,
|
637 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
638 |
+
)
|
639 |
+
|
640 |
+
return attn_output
|
641 |
+
|
642 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
643 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
644 |
+
|
645 |
+
# On the first iteration we need to properly re-create the padding mask
|
646 |
+
# by slicing it on the proper place
|
647 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
648 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
649 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
650 |
+
|
651 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
652 |
+
|
653 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
654 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
655 |
+
|
656 |
+
if query_length == kv_seq_len:
|
657 |
+
query_layer = index_first_axis(
|
658 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
659 |
+
)
|
660 |
+
cu_seqlens_q = cu_seqlens_k
|
661 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
662 |
+
indices_q = indices_k
|
663 |
+
elif query_length == 1:
|
664 |
+
max_seqlen_in_batch_q = 1
|
665 |
+
cu_seqlens_q = torch.arange(
|
666 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
667 |
+
) # There is a memcpy here, that is very bad.
|
668 |
+
indices_q = cu_seqlens_q[:-1]
|
669 |
+
query_layer = query_layer.squeeze(1)
|
670 |
+
else:
|
671 |
+
# The -q_len: slice assumes left padding.
|
672 |
+
attention_mask = attention_mask[:, -query_length:]
|
673 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
674 |
+
|
675 |
+
return (
|
676 |
+
query_layer,
|
677 |
+
key_layer,
|
678 |
+
value_layer,
|
679 |
+
indices_q,
|
680 |
+
(cu_seqlens_q, cu_seqlens_k),
|
681 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
682 |
+
)
|
683 |
+
|
684 |
+
|
685 |
+
# copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Mixtral
|
686 |
+
# TODO @longjie no longer copied from Mistral after static cache
|
687 |
+
class TanukiSdpaAttention(TanukiAttention):
|
688 |
+
"""
|
689 |
+
Tanuki attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
690 |
+
`TanukiAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
691 |
+
SDPA API.
|
692 |
+
"""
|
693 |
+
|
694 |
+
# Adapted from TanukiAttention.forward
|
695 |
+
def forward(
|
696 |
+
self,
|
697 |
+
hidden_states: torch.Tensor,
|
698 |
+
attention_mask: Optional[torch.Tensor] = None,
|
699 |
+
position_ids: Optional[torch.LongTensor] = None,
|
700 |
+
past_key_value: Optional[Cache] = None,
|
701 |
+
output_attentions: bool = False,
|
702 |
+
use_cache: bool = False,
|
703 |
+
cache_position: Optional[torch.LongTensor] = None,
|
704 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
705 |
+
if output_attentions:
|
706 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
707 |
+
logger.warning_once(
|
708 |
+
"TanukiModel is using TanukiSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
709 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
710 |
+
)
|
711 |
+
return super().forward(
|
712 |
+
hidden_states=hidden_states,
|
713 |
+
attention_mask=attention_mask,
|
714 |
+
position_ids=position_ids,
|
715 |
+
past_key_value=past_key_value,
|
716 |
+
output_attentions=output_attentions,
|
717 |
+
use_cache=use_cache,
|
718 |
+
)
|
719 |
+
|
720 |
+
bsz, q_len, _ = hidden_states.size()
|
721 |
+
|
722 |
+
query_states = self.q_proj(hidden_states)
|
723 |
+
key_states = self.k_proj(hidden_states)
|
724 |
+
value_states = self.v_proj(hidden_states)
|
725 |
+
|
726 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
727 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
728 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
729 |
+
|
730 |
+
kv_seq_len = key_states.shape[-2]
|
731 |
+
if past_key_value is not None:
|
732 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
733 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
734 |
+
|
735 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
736 |
+
|
737 |
+
if past_key_value is not None:
|
738 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
739 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
740 |
+
|
741 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
742 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
743 |
+
|
744 |
+
causal_mask = attention_mask
|
745 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
746 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
747 |
+
|
748 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
749 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
750 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
751 |
+
query_states = query_states.contiguous()
|
752 |
+
key_states = key_states.contiguous()
|
753 |
+
value_states = value_states.contiguous()
|
754 |
+
|
755 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
756 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
757 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
758 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
759 |
+
|
760 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
761 |
+
query_states,
|
762 |
+
key_states,
|
763 |
+
value_states,
|
764 |
+
attn_mask=causal_mask,
|
765 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
766 |
+
is_causal=is_causal,
|
767 |
+
)
|
768 |
+
|
769 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
770 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
771 |
+
|
772 |
+
attn_output = self.o_proj(attn_output)
|
773 |
+
|
774 |
+
return attn_output, None, past_key_value
|
775 |
+
|
776 |
+
|
777 |
+
TANUKI_ATTENTION_CLASSES = {
|
778 |
+
"eager": TanukiAttention,
|
779 |
+
"flash_attention_2": TanukiFlashAttention2,
|
780 |
+
"sdpa": TanukiSdpaAttention,
|
781 |
+
}
|
782 |
+
|
783 |
+
|
784 |
+
class TanukiBlockSparseTop2MLP(nn.Module):
|
785 |
+
def __init__(self, config: TanukiConfig):
|
786 |
+
super().__init__()
|
787 |
+
self.ffn_dim = config.intermediate_size
|
788 |
+
self.hidden_dim = config.hidden_size
|
789 |
+
|
790 |
+
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
791 |
+
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
792 |
+
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
793 |
+
|
794 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
795 |
+
|
796 |
+
def forward(self, hidden_states):
|
797 |
+
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
|
798 |
+
current_hidden_states = self.w2(current_hidden_states)
|
799 |
+
return current_hidden_states
|
800 |
+
|
801 |
+
|
802 |
+
class TanukiSparseMoeBlock(nn.Module):
|
803 |
+
"""
|
804 |
+
This implementation is
|
805 |
+
strictly equivalent to standard MoE with full capacity (no
|
806 |
+
dropped tokens). It's faster since it formulates MoE operations
|
807 |
+
in terms of block-sparse operations to accomodate imbalanced
|
808 |
+
assignments of tokens to experts, whereas standard MoE either
|
809 |
+
(1) drop tokens at the cost of reduced performance or (2) set
|
810 |
+
capacity factor to number of experts and thus waste computation
|
811 |
+
and memory on padding.
|
812 |
+
"""
|
813 |
+
|
814 |
+
def __init__(self, config):
|
815 |
+
super().__init__()
|
816 |
+
self.hidden_dim = config.hidden_size
|
817 |
+
self.ffn_dim = config.intermediate_size
|
818 |
+
self.num_experts = config.num_local_experts
|
819 |
+
self.top_k = config.num_experts_per_tok
|
820 |
+
|
821 |
+
# gating
|
822 |
+
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
823 |
+
|
824 |
+
self.experts = nn.ModuleList([TanukiBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
|
825 |
+
|
826 |
+
# Jitter parameters
|
827 |
+
self.jitter_noise = config.router_jitter_noise
|
828 |
+
|
829 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
830 |
+
""" """
|
831 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
832 |
+
if self.training and self.jitter_noise > 0:
|
833 |
+
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
|
834 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
835 |
+
# router_logits: (batch * sequence_length, n_experts)
|
836 |
+
router_logits = self.gate(hidden_states)
|
837 |
+
|
838 |
+
mean = router_logits.mean(dim=-1, keepdim=True)
|
839 |
+
std = router_logits.std(dim=-1, keepdim=True)
|
840 |
+
router_logits = (router_logits - mean) / (std + 1e-5)
|
841 |
+
|
842 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
843 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
844 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
845 |
+
# we cast back to the input dtype
|
846 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
847 |
+
|
848 |
+
final_hidden_states = torch.zeros(
|
849 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
850 |
+
)
|
851 |
+
|
852 |
+
# One hot encode the selected experts to create an expert mask
|
853 |
+
# this will be used to easily index which expert is going to be sollicitated
|
854 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
855 |
+
|
856 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
857 |
+
for expert_idx in range(self.num_experts):
|
858 |
+
expert_layer = self.experts[expert_idx]
|
859 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
860 |
+
if top_x.shape[0] == 0:
|
861 |
+
continue
|
862 |
+
|
863 |
+
# Index the correct hidden states and compute the expert hidden state for
|
864 |
+
# the current expert. We need to make sure to multiply the output hidden
|
865 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
866 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
867 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
868 |
+
|
869 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
870 |
+
# the `top_x` tensor here.
|
871 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
872 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
873 |
+
return final_hidden_states, router_logits
|
874 |
+
|
875 |
+
|
876 |
+
class TanukiDecoderLayer(nn.Module):
|
877 |
+
def __init__(self, config: TanukiConfig, layer_idx: int):
|
878 |
+
super().__init__()
|
879 |
+
self.hidden_size = config.hidden_size
|
880 |
+
|
881 |
+
self.self_attn = TANUKI_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
882 |
+
|
883 |
+
self.block_sparse_moe = TanukiSparseMoeBlock(config)
|
884 |
+
self.input_layernorm = TanukiRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
885 |
+
self.post_attention_layernorm = TanukiRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
886 |
+
|
887 |
+
def forward(
|
888 |
+
self,
|
889 |
+
hidden_states: torch.Tensor,
|
890 |
+
attention_mask: Optional[torch.Tensor] = None,
|
891 |
+
position_ids: Optional[torch.LongTensor] = None,
|
892 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
893 |
+
output_attentions: Optional[bool] = False,
|
894 |
+
output_router_logits: Optional[bool] = False,
|
895 |
+
use_cache: Optional[bool] = False,
|
896 |
+
cache_position: Optional[torch.LongTensor] = None,
|
897 |
+
**kwargs,
|
898 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
899 |
+
"""
|
900 |
+
Args:
|
901 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
902 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
903 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
904 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
905 |
+
output_attentions (`bool`, *optional*):
|
906 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
907 |
+
returned tensors for more detail.
|
908 |
+
output_router_logits (`bool`, *optional*):
|
909 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
910 |
+
should not be returned during inference.
|
911 |
+
use_cache (`bool`, *optional*):
|
912 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
913 |
+
(see `past_key_values`).
|
914 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
915 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
916 |
+
kwargs (`dict`, *optional*):
|
917 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
918 |
+
into the model
|
919 |
+
"""
|
920 |
+
|
921 |
+
residual = hidden_states
|
922 |
+
|
923 |
+
hidden_states = self.input_layernorm(hidden_states)
|
924 |
+
|
925 |
+
# Self Attention
|
926 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
927 |
+
hidden_states=hidden_states,
|
928 |
+
attention_mask=attention_mask,
|
929 |
+
position_ids=position_ids,
|
930 |
+
past_key_value=past_key_value,
|
931 |
+
output_attentions=output_attentions,
|
932 |
+
use_cache=use_cache,
|
933 |
+
cache_position=cache_position,
|
934 |
+
)
|
935 |
+
hidden_states = residual + hidden_states
|
936 |
+
|
937 |
+
# Fully Connected
|
938 |
+
residual = hidden_states
|
939 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
940 |
+
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
|
941 |
+
hidden_states = residual + hidden_states
|
942 |
+
|
943 |
+
outputs = (hidden_states,)
|
944 |
+
|
945 |
+
if output_attentions:
|
946 |
+
outputs += (self_attn_weights,)
|
947 |
+
|
948 |
+
if use_cache:
|
949 |
+
outputs += (present_key_value,)
|
950 |
+
|
951 |
+
if output_router_logits:
|
952 |
+
outputs += (router_logits,)
|
953 |
+
|
954 |
+
return outputs
|
955 |
+
|
956 |
+
TANUKI_START_DOCSTRING = r"""
|
957 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
958 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
959 |
+
etc.)
|
960 |
+
|
961 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
962 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
963 |
+
and behavior.
|
964 |
+
|
965 |
+
Parameters:
|
966 |
+
config ([`TanukiConfig`]):
|
967 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
968 |
+
load the weights associated with the model, only the configuration. Check out the
|
969 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
970 |
+
"""
|
971 |
+
|
972 |
+
|
973 |
+
@add_start_docstrings(
|
974 |
+
"The bare Tanuki Model outputting raw hidden-states without any specific head on top.",
|
975 |
+
TANUKI_START_DOCSTRING,
|
976 |
+
)
|
977 |
+
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2PreTrainedModel with Qwen2->Mixtral
|
978 |
+
class TanukiPreTrainedModel(PreTrainedModel):
|
979 |
+
config_class = TanukiConfig
|
980 |
+
base_model_prefix = "model"
|
981 |
+
supports_gradient_checkpointing = True
|
982 |
+
_no_split_modules = ["TanukiDecoderLayer"]
|
983 |
+
_skip_keys_device_placement = "past_key_values"
|
984 |
+
_supports_flash_attn_2 = True
|
985 |
+
_supports_sdpa = True
|
986 |
+
_supports_cache_class = True
|
987 |
+
|
988 |
+
def _init_weights(self, module):
|
989 |
+
std = self.config.initializer_range
|
990 |
+
if isinstance(module, nn.Linear):
|
991 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
992 |
+
if module.bias is not None:
|
993 |
+
module.bias.data.zero_()
|
994 |
+
elif isinstance(module, nn.Embedding):
|
995 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
996 |
+
if module.padding_idx is not None:
|
997 |
+
module.weight.data[module.padding_idx].zero_()
|
998 |
+
|
999 |
+
|
1000 |
+
TANUKI_INPUTS_DOCSTRING = r"""
|
1001 |
+
Args:
|
1002 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1003 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1004 |
+
it.
|
1005 |
+
|
1006 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1007 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1008 |
+
|
1009 |
+
[What are input IDs?](../glossary#input-ids)
|
1010 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1011 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1012 |
+
|
1013 |
+
- 1 for tokens that are **not masked**,
|
1014 |
+
- 0 for tokens that are **masked**.
|
1015 |
+
|
1016 |
+
[What are attention masks?](../glossary#attention-mask)
|
1017 |
+
|
1018 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1019 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1020 |
+
|
1021 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
1022 |
+
`past_key_values`).
|
1023 |
+
|
1024 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1025 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1026 |
+
information on the default strategy.
|
1027 |
+
|
1028 |
+
- 1 indicates the head is **not masked**,
|
1029 |
+
- 0 indicates the head is **masked**.
|
1030 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1031 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1032 |
+
config.n_positions - 1]`.
|
1033 |
+
|
1034 |
+
[What are position IDs?](../glossary#position-ids)
|
1035 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1036 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
1037 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
1038 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
1039 |
+
|
1040 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1041 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1042 |
+
|
1043 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1044 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1045 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1046 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1047 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1048 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1049 |
+
model's internal embedding lookup matrix.
|
1050 |
+
use_cache (`bool`, *optional*):
|
1051 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1052 |
+
`past_key_values`).
|
1053 |
+
output_attentions (`bool`, *optional*):
|
1054 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1055 |
+
tensors for more detail.
|
1056 |
+
output_hidden_states (`bool`, *optional*):
|
1057 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1058 |
+
more detail.
|
1059 |
+
output_router_logits (`bool`, *optional*):
|
1060 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
1061 |
+
should not be returned during inference.
|
1062 |
+
return_dict (`bool`, *optional*):
|
1063 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1064 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1065 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
1066 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
1067 |
+
the complete sequence length.
|
1068 |
+
"""
|
1069 |
+
|
1070 |
+
|
1071 |
+
@add_start_docstrings(
|
1072 |
+
"The bare Tanuki Model outputting raw hidden-states without any specific head on top.",
|
1073 |
+
TANUKI_START_DOCSTRING,
|
1074 |
+
)
|
1075 |
+
# copied from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->MIXTRAL,Mistral->Mixtral
|
1076 |
+
# TODO @longjie no longer copied from Mistral after static cache
|
1077 |
+
class TanukiModel(TanukiPreTrainedModel):
|
1078 |
+
"""
|
1079 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TanukiDecoderLayer`]
|
1080 |
+
|
1081 |
+
Args:
|
1082 |
+
config: TanukiConfig
|
1083 |
+
"""
|
1084 |
+
|
1085 |
+
def __init__(self, config: TanukiConfig):
|
1086 |
+
super().__init__(config)
|
1087 |
+
self.padding_idx = config.pad_token_id
|
1088 |
+
self.vocab_size = config.vocab_size
|
1089 |
+
|
1090 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1091 |
+
self.layers = nn.ModuleList(
|
1092 |
+
[TanukiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1093 |
+
)
|
1094 |
+
self._attn_implementation = config._attn_implementation
|
1095 |
+
self.norm = TanukiRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1096 |
+
|
1097 |
+
self.gradient_checkpointing = False
|
1098 |
+
# Initialize weights and apply final processing
|
1099 |
+
self.post_init()
|
1100 |
+
|
1101 |
+
def get_input_embeddings(self):
|
1102 |
+
return self.embed_tokens
|
1103 |
+
|
1104 |
+
def set_input_embeddings(self, value):
|
1105 |
+
self.embed_tokens = value
|
1106 |
+
|
1107 |
+
# Ignore copy
|
1108 |
+
@add_start_docstrings_to_model_forward(TANUKI_INPUTS_DOCSTRING)
|
1109 |
+
def forward(
|
1110 |
+
self,
|
1111 |
+
input_ids: torch.LongTensor = None,
|
1112 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1113 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1114 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1115 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1116 |
+
use_cache: Optional[bool] = None,
|
1117 |
+
output_attentions: Optional[bool] = None,
|
1118 |
+
output_hidden_states: Optional[bool] = None,
|
1119 |
+
output_router_logits: Optional[bool] = None,
|
1120 |
+
return_dict: Optional[bool] = None,
|
1121 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1122 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
1123 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1124 |
+
output_router_logits = (
|
1125 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1126 |
+
)
|
1127 |
+
output_hidden_states = (
|
1128 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1129 |
+
)
|
1130 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1131 |
+
|
1132 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1133 |
+
|
1134 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1135 |
+
raise ValueError(
|
1136 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
1137 |
+
)
|
1138 |
+
|
1139 |
+
if self.gradient_checkpointing and self.training:
|
1140 |
+
if use_cache:
|
1141 |
+
logger.warning_once(
|
1142 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1143 |
+
)
|
1144 |
+
use_cache = False
|
1145 |
+
|
1146 |
+
use_legacy_cache = False
|
1147 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
1148 |
+
use_legacy_cache = True
|
1149 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1150 |
+
logger.warning_once(
|
1151 |
+
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
1152 |
+
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
1153 |
+
)
|
1154 |
+
|
1155 |
+
if inputs_embeds is None:
|
1156 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1157 |
+
|
1158 |
+
if cache_position is None:
|
1159 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1160 |
+
cache_position = torch.arange(
|
1161 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
1162 |
+
)
|
1163 |
+
if position_ids is None:
|
1164 |
+
position_ids = cache_position.unsqueeze(0)
|
1165 |
+
|
1166 |
+
causal_mask = self._update_causal_mask(
|
1167 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
hidden_states = inputs_embeds
|
1171 |
+
|
1172 |
+
# decoder layers
|
1173 |
+
all_hidden_states = () if output_hidden_states else None
|
1174 |
+
all_self_attns = () if output_attentions else None
|
1175 |
+
all_router_logits = () if output_router_logits else None
|
1176 |
+
next_decoder_cache = None
|
1177 |
+
|
1178 |
+
for decoder_layer in self.layers:
|
1179 |
+
if output_hidden_states:
|
1180 |
+
all_hidden_states += (hidden_states,)
|
1181 |
+
|
1182 |
+
if self.gradient_checkpointing and self.training:
|
1183 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1184 |
+
decoder_layer.__call__,
|
1185 |
+
hidden_states,
|
1186 |
+
causal_mask,
|
1187 |
+
position_ids,
|
1188 |
+
past_key_values,
|
1189 |
+
output_attentions,
|
1190 |
+
output_router_logits,
|
1191 |
+
use_cache,
|
1192 |
+
cache_position,
|
1193 |
+
)
|
1194 |
+
else:
|
1195 |
+
layer_outputs = decoder_layer(
|
1196 |
+
hidden_states,
|
1197 |
+
attention_mask=causal_mask,
|
1198 |
+
position_ids=position_ids,
|
1199 |
+
past_key_value=past_key_values,
|
1200 |
+
output_attentions=output_attentions,
|
1201 |
+
output_router_logits=output_router_logits,
|
1202 |
+
use_cache=use_cache,
|
1203 |
+
cache_position=cache_position,
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
hidden_states = layer_outputs[0]
|
1207 |
+
|
1208 |
+
if use_cache:
|
1209 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1210 |
+
|
1211 |
+
if output_attentions:
|
1212 |
+
all_self_attns += (layer_outputs[1],)
|
1213 |
+
|
1214 |
+
if output_router_logits:
|
1215 |
+
all_router_logits += (layer_outputs[-1],)
|
1216 |
+
|
1217 |
+
hidden_states = self.norm(hidden_states)
|
1218 |
+
|
1219 |
+
# add hidden states from the last decoder layer
|
1220 |
+
if output_hidden_states:
|
1221 |
+
all_hidden_states += (hidden_states,)
|
1222 |
+
|
1223 |
+
next_cache = None
|
1224 |
+
if use_cache:
|
1225 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1226 |
+
|
1227 |
+
if not return_dict:
|
1228 |
+
return tuple(
|
1229 |
+
v
|
1230 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
1231 |
+
if v is not None
|
1232 |
+
)
|
1233 |
+
return MoeModelOutputWithPast(
|
1234 |
+
last_hidden_state=hidden_states,
|
1235 |
+
past_key_values=next_cache,
|
1236 |
+
hidden_states=all_hidden_states,
|
1237 |
+
attentions=all_self_attns,
|
1238 |
+
router_logits=all_router_logits,
|
1239 |
+
)
|
1240 |
+
|
1241 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
|
1242 |
+
def _update_causal_mask(
|
1243 |
+
self,
|
1244 |
+
attention_mask: torch.Tensor,
|
1245 |
+
input_tensor: torch.Tensor,
|
1246 |
+
cache_position: torch.Tensor,
|
1247 |
+
past_key_values: Cache,
|
1248 |
+
output_attentions: bool,
|
1249 |
+
):
|
1250 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1251 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1252 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1253 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1254 |
+
|
1255 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1256 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1257 |
+
return attention_mask
|
1258 |
+
return None
|
1259 |
+
|
1260 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1261 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1262 |
+
# to infer the attention mask.
|
1263 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1264 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
1265 |
+
|
1266 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1267 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
1268 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1269 |
+
attention_mask,
|
1270 |
+
inputs_embeds=input_tensor,
|
1271 |
+
past_key_values_length=past_seen_tokens,
|
1272 |
+
is_training=self.training,
|
1273 |
+
):
|
1274 |
+
return None
|
1275 |
+
|
1276 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1277 |
+
min_dtype = torch.finfo(dtype).min
|
1278 |
+
sequence_length = input_tensor.shape[1]
|
1279 |
+
if using_static_cache:
|
1280 |
+
target_length = past_key_values.get_max_length()
|
1281 |
+
else:
|
1282 |
+
target_length = (
|
1283 |
+
attention_mask.shape[-1]
|
1284 |
+
if isinstance(attention_mask, torch.Tensor)
|
1285 |
+
else past_seen_tokens + sequence_length + 1
|
1286 |
+
)
|
1287 |
+
|
1288 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
1289 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
1290 |
+
if attention_mask.max() != 0:
|
1291 |
+
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
|
1292 |
+
causal_mask = attention_mask
|
1293 |
+
else:
|
1294 |
+
causal_mask = torch.full(
|
1295 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
1296 |
+
)
|
1297 |
+
if sequence_length != 1:
|
1298 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1299 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1300 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
1301 |
+
if attention_mask is not None:
|
1302 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1303 |
+
mask_length = attention_mask.shape[-1]
|
1304 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
1305 |
+
padding_mask = padding_mask == 0
|
1306 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
1307 |
+
padding_mask, min_dtype
|
1308 |
+
)
|
1309 |
+
if (
|
1310 |
+
self.config._attn_implementation == "sdpa"
|
1311 |
+
and attention_mask is not None
|
1312 |
+
and attention_mask.device.type == "cuda"
|
1313 |
+
and not output_attentions
|
1314 |
+
):
|
1315 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1316 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1317 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1318 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1319 |
+
|
1320 |
+
return causal_mask
|
1321 |
+
|
1322 |
+
|
1323 |
+
class TanukiForCausalLM(TanukiPreTrainedModel):
|
1324 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1325 |
+
|
1326 |
+
def __init__(self, config):
|
1327 |
+
super().__init__(config)
|
1328 |
+
self.model = TanukiModel(config)
|
1329 |
+
self.vocab_size = config.vocab_size
|
1330 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1331 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
1332 |
+
self.num_experts = config.num_local_experts
|
1333 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
1334 |
+
# Initialize weights and apply final processing
|
1335 |
+
self.post_init()
|
1336 |
+
|
1337 |
+
def get_input_embeddings(self):
|
1338 |
+
return self.model.embed_tokens
|
1339 |
+
|
1340 |
+
def set_input_embeddings(self, value):
|
1341 |
+
self.model.embed_tokens = value
|
1342 |
+
|
1343 |
+
def get_output_embeddings(self):
|
1344 |
+
return self.lm_head
|
1345 |
+
|
1346 |
+
def set_output_embeddings(self, new_embeddings):
|
1347 |
+
self.lm_head = new_embeddings
|
1348 |
+
|
1349 |
+
def set_decoder(self, decoder):
|
1350 |
+
self.model = decoder
|
1351 |
+
|
1352 |
+
def get_decoder(self):
|
1353 |
+
return self.model
|
1354 |
+
|
1355 |
+
@add_start_docstrings_to_model_forward(TANUKI_INPUTS_DOCSTRING)
|
1356 |
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1357 |
+
# Ignore copy
|
1358 |
+
def forward(
|
1359 |
+
self,
|
1360 |
+
input_ids: torch.LongTensor = None,
|
1361 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1362 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1363 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1364 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1365 |
+
labels: Optional[torch.LongTensor] = None,
|
1366 |
+
use_cache: Optional[bool] = None,
|
1367 |
+
output_attentions: Optional[bool] = None,
|
1368 |
+
output_hidden_states: Optional[bool] = None,
|
1369 |
+
output_router_logits: Optional[bool] = None,
|
1370 |
+
return_dict: Optional[bool] = None,
|
1371 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1372 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
1373 |
+
r"""
|
1374 |
+
Args:
|
1375 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1376 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1377 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1378 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1379 |
+
|
1380 |
+
Returns:
|
1381 |
+
|
1382 |
+
Example:
|
1383 |
+
|
1384 |
+
```python
|
1385 |
+
>>> from transformers import AutoTokenizer, TanukiForCausalLM
|
1386 |
+
|
1387 |
+
>>> model = TanukiForCausalLM.from_pretrained("mistralai/Tanuki-8x7B-v0.1")
|
1388 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Tanuki-8x7B-v0.1")
|
1389 |
+
|
1390 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1391 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1392 |
+
|
1393 |
+
>>> # Generate
|
1394 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1395 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1396 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1397 |
+
```"""
|
1398 |
+
|
1399 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1400 |
+
output_router_logits = (
|
1401 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1402 |
+
)
|
1403 |
+
|
1404 |
+
output_hidden_states = (
|
1405 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1406 |
+
)
|
1407 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1408 |
+
|
1409 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1410 |
+
outputs = self.model(
|
1411 |
+
input_ids=input_ids,
|
1412 |
+
attention_mask=attention_mask,
|
1413 |
+
position_ids=position_ids,
|
1414 |
+
past_key_values=past_key_values,
|
1415 |
+
inputs_embeds=inputs_embeds,
|
1416 |
+
use_cache=use_cache,
|
1417 |
+
output_attentions=output_attentions,
|
1418 |
+
output_hidden_states=output_hidden_states,
|
1419 |
+
output_router_logits=output_router_logits,
|
1420 |
+
return_dict=return_dict,
|
1421 |
+
cache_position=cache_position,
|
1422 |
+
)
|
1423 |
+
|
1424 |
+
hidden_states = outputs[0]
|
1425 |
+
logits = self.lm_head(hidden_states)
|
1426 |
+
logits = logits.float()
|
1427 |
+
|
1428 |
+
loss = None
|
1429 |
+
if labels is not None:
|
1430 |
+
# Shift so that tokens < n predict n
|
1431 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1432 |
+
shift_labels = labels[..., 1:].contiguous()
|
1433 |
+
# Flatten the tokens
|
1434 |
+
loss_fct = CrossEntropyLoss()
|
1435 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1436 |
+
shift_labels = shift_labels.view(-1)
|
1437 |
+
# Enable model parallelism
|
1438 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1439 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1440 |
+
|
1441 |
+
aux_loss = None
|
1442 |
+
if output_router_logits:
|
1443 |
+
aux_loss = load_balancing_loss_func(
|
1444 |
+
outputs.router_logits if return_dict else outputs[-1],
|
1445 |
+
self.num_experts,
|
1446 |
+
self.num_experts_per_tok,
|
1447 |
+
attention_mask,
|
1448 |
+
)
|
1449 |
+
if labels is not None:
|
1450 |
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
1451 |
+
|
1452 |
+
if not return_dict:
|
1453 |
+
output = (logits,) + outputs[1:]
|
1454 |
+
if output_router_logits:
|
1455 |
+
output = (aux_loss,) + output
|
1456 |
+
return (loss,) + output if loss is not None else output
|
1457 |
+
|
1458 |
+
return MoeCausalLMOutputWithPast(
|
1459 |
+
loss=loss,
|
1460 |
+
aux_loss=aux_loss,
|
1461 |
+
logits=logits,
|
1462 |
+
past_key_values=outputs.past_key_values,
|
1463 |
+
hidden_states=outputs.hidden_states,
|
1464 |
+
attentions=outputs.attentions,
|
1465 |
+
router_logits=outputs.router_logits,
|
1466 |
+
)
|
1467 |
+
|
1468 |
+
def prepare_inputs_for_generation(
|
1469 |
+
self,
|
1470 |
+
input_ids,
|
1471 |
+
past_key_values=None,
|
1472 |
+
attention_mask=None,
|
1473 |
+
inputs_embeds=None,
|
1474 |
+
output_router_logits=False,
|
1475 |
+
cache_position=None,
|
1476 |
+
use_cache=True,
|
1477 |
+
**kwargs,
|
1478 |
+
):
|
1479 |
+
past_length = 0
|
1480 |
+
# Omit tokens covered by past_key_values
|
1481 |
+
if past_key_values is not None:
|
1482 |
+
# Past key values are always initialized with a `Cache` object -> no need for if-else anymore
|
1483 |
+
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
1484 |
+
max_cache_length = (
|
1485 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
1486 |
+
if past_key_values.get_max_length() is not None
|
1487 |
+
else None
|
1488 |
+
)
|
1489 |
+
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
1490 |
+
|
1491 |
+
# Keep only the unprocessed tokens:
|
1492 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1493 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1494 |
+
# input)
|
1495 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1496 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1497 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1498 |
+
# input_ids based on the past_length.
|
1499 |
+
elif past_length < input_ids.shape[1]:
|
1500 |
+
input_ids = input_ids[:, past_length:]
|
1501 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1502 |
+
|
1503 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1504 |
+
if (
|
1505 |
+
max_cache_length is not None
|
1506 |
+
and attention_mask is not None
|
1507 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1508 |
+
):
|
1509 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1510 |
+
|
1511 |
+
position_ids = kwargs.get("position_ids", None)
|
1512 |
+
if attention_mask is not None and position_ids is None:
|
1513 |
+
# create position_ids on the fly for batch generation
|
1514 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1515 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1516 |
+
if past_key_values:
|
1517 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1518 |
+
|
1519 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1520 |
+
if inputs_embeds is not None and past_length == 0:
|
1521 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1522 |
+
else:
|
1523 |
+
model_inputs = {"input_ids": input_ids}
|
1524 |
+
|
1525 |
+
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
1526 |
+
if cache_position is None:
|
1527 |
+
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
1528 |
+
elif use_cache:
|
1529 |
+
cache_position = cache_position[-input_length:]
|
1530 |
+
|
1531 |
+
model_inputs.update(
|
1532 |
+
{
|
1533 |
+
"position_ids": position_ids,
|
1534 |
+
"past_key_values": past_key_values,
|
1535 |
+
"use_cache": use_cache,
|
1536 |
+
"attention_mask": attention_mask,
|
1537 |
+
"output_router_logits": output_router_logits,
|
1538 |
+
"cache_position": cache_position,
|
1539 |
+
}
|
1540 |
+
)
|
1541 |
+
return model_inputs
|
1542 |
+
|
1543 |
+
@staticmethod
|
1544 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1545 |
+
reordered_past = ()
|
1546 |
+
for layer_past in past_key_values:
|
1547 |
+
reordered_past += (
|
1548 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1549 |
+
)
|
1550 |
+
return reordered_past
|
1551 |
+
|
1552 |
+
|
1553 |
+
@add_start_docstrings(
|
1554 |
+
"""
|
1555 |
+
The Tanuki Model transformer with a sequence classification head on top (linear layer).
|
1556 |
+
|
1557 |
+
[`TanukiForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1558 |
+
(e.g. GPT-2) do.
|
1559 |
+
|
1560 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1561 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1562 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1563 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1564 |
+
each row of the batch).
|
1565 |
+
""",
|
1566 |
+
TANUKI_START_DOCSTRING,
|
1567 |
+
)
|
1568 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mixtral, LLAMA->MIXTRAL
|
1569 |
+
class TanukiForSequenceClassification(TanukiPreTrainedModel):
|
1570 |
+
def __init__(self, config):
|
1571 |
+
super().__init__(config)
|
1572 |
+
self.num_labels = config.num_labels
|
1573 |
+
self.model = TanukiModel(config)
|
1574 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1575 |
+
|
1576 |
+
# Initialize weights and apply final processing
|
1577 |
+
self.post_init()
|
1578 |
+
|
1579 |
+
def get_input_embeddings(self):
|
1580 |
+
return self.model.embed_tokens
|
1581 |
+
|
1582 |
+
def set_input_embeddings(self, value):
|
1583 |
+
self.model.embed_tokens = value
|
1584 |
+
|
1585 |
+
@add_start_docstrings_to_model_forward(TANUKI_INPUTS_DOCSTRING)
|
1586 |
+
def forward(
|
1587 |
+
self,
|
1588 |
+
input_ids: torch.LongTensor = None,
|
1589 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1590 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1591 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1592 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1593 |
+
labels: Optional[torch.LongTensor] = None,
|
1594 |
+
use_cache: Optional[bool] = None,
|
1595 |
+
output_attentions: Optional[bool] = None,
|
1596 |
+
output_hidden_states: Optional[bool] = None,
|
1597 |
+
return_dict: Optional[bool] = None,
|
1598 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1599 |
+
r"""
|
1600 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1601 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1602 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1603 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1604 |
+
"""
|
1605 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1606 |
+
|
1607 |
+
transformer_outputs = self.model(
|
1608 |
+
input_ids,
|
1609 |
+
attention_mask=attention_mask,
|
1610 |
+
position_ids=position_ids,
|
1611 |
+
past_key_values=past_key_values,
|
1612 |
+
inputs_embeds=inputs_embeds,
|
1613 |
+
use_cache=use_cache,
|
1614 |
+
output_attentions=output_attentions,
|
1615 |
+
output_hidden_states=output_hidden_states,
|
1616 |
+
return_dict=return_dict,
|
1617 |
+
)
|
1618 |
+
hidden_states = transformer_outputs[0]
|
1619 |
+
logits = self.score(hidden_states)
|
1620 |
+
|
1621 |
+
if input_ids is not None:
|
1622 |
+
batch_size = input_ids.shape[0]
|
1623 |
+
else:
|
1624 |
+
batch_size = inputs_embeds.shape[0]
|
1625 |
+
|
1626 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1627 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1628 |
+
if self.config.pad_token_id is None:
|
1629 |
+
sequence_lengths = -1
|
1630 |
+
else:
|
1631 |
+
if input_ids is not None:
|
1632 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1633 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1634 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1635 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1636 |
+
else:
|
1637 |
+
sequence_lengths = -1
|
1638 |
+
|
1639 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1640 |
+
|
1641 |
+
loss = None
|
1642 |
+
if labels is not None:
|
1643 |
+
labels = labels.to(logits.device)
|
1644 |
+
if self.config.problem_type is None:
|
1645 |
+
if self.num_labels == 1:
|
1646 |
+
self.config.problem_type = "regression"
|
1647 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1648 |
+
self.config.problem_type = "single_label_classification"
|
1649 |
+
else:
|
1650 |
+
self.config.problem_type = "multi_label_classification"
|
1651 |
+
|
1652 |
+
if self.config.problem_type == "regression":
|
1653 |
+
loss_fct = MSELoss()
|
1654 |
+
if self.num_labels == 1:
|
1655 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1656 |
+
else:
|
1657 |
+
loss = loss_fct(pooled_logits, labels)
|
1658 |
+
elif self.config.problem_type == "single_label_classification":
|
1659 |
+
loss_fct = CrossEntropyLoss()
|
1660 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1661 |
+
elif self.config.problem_type == "multi_label_classification":
|
1662 |
+
loss_fct = BCEWithLogitsLoss()
|
1663 |
+
loss = loss_fct(pooled_logits, labels)
|
1664 |
+
if not return_dict:
|
1665 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1666 |
+
return ((loss,) + output) if loss is not None else output
|
1667 |
+
|
1668 |
+
return SequenceClassifierOutputWithPast(
|
1669 |
+
loss=loss,
|
1670 |
+
logits=pooled_logits,
|
1671 |
+
past_key_values=transformer_outputs.past_key_values,
|
1672 |
+
hidden_states=transformer_outputs.hidden_states,
|
1673 |
+
attentions=transformer_outputs.attentions,
|
1674 |
+
)
|
1675 |
+
|
1676 |
+
|
1677 |
+
@add_start_docstrings(
|
1678 |
+
"""
|
1679 |
+
The Tanuki Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1680 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1681 |
+
""",
|
1682 |
+
TANUKI_START_DOCSTRING,
|
1683 |
+
)
|
1684 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->Mixtral, LLAMA->MIXTRAL
|
1685 |
+
class TanukiForTokenClassification(TanukiPreTrainedModel):
|
1686 |
+
def __init__(self, config):
|
1687 |
+
super().__init__(config)
|
1688 |
+
self.num_labels = config.num_labels
|
1689 |
+
self.model = TanukiModel(config)
|
1690 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1691 |
+
classifier_dropout = config.classifier_dropout
|
1692 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1693 |
+
classifier_dropout = config.hidden_dropout
|
1694 |
+
else:
|
1695 |
+
classifier_dropout = 0.1
|
1696 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1697 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1698 |
+
|
1699 |
+
# Initialize weights and apply final processing
|
1700 |
+
self.post_init()
|
1701 |
+
|
1702 |
+
def get_input_embeddings(self):
|
1703 |
+
return self.model.embed_tokens
|
1704 |
+
|
1705 |
+
def set_input_embeddings(self, value):
|
1706 |
+
self.model.embed_tokens = value
|
1707 |
+
|
1708 |
+
@add_start_docstrings_to_model_forward(TANUKI_INPUTS_DOCSTRING)
|
1709 |
+
def forward(
|
1710 |
+
self,
|
1711 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1712 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1713 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1714 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1715 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1716 |
+
labels: Optional[torch.LongTensor] = None,
|
1717 |
+
use_cache: Optional[bool] = None,
|
1718 |
+
output_attentions: Optional[bool] = None,
|
1719 |
+
output_hidden_states: Optional[bool] = None,
|
1720 |
+
return_dict: Optional[bool] = None,
|
1721 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1722 |
+
r"""
|
1723 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1724 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1725 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1726 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1727 |
+
"""
|
1728 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1729 |
+
|
1730 |
+
outputs = self.model(
|
1731 |
+
input_ids,
|
1732 |
+
attention_mask=attention_mask,
|
1733 |
+
position_ids=position_ids,
|
1734 |
+
past_key_values=past_key_values,
|
1735 |
+
inputs_embeds=inputs_embeds,
|
1736 |
+
use_cache=use_cache,
|
1737 |
+
output_attentions=output_attentions,
|
1738 |
+
output_hidden_states=output_hidden_states,
|
1739 |
+
return_dict=return_dict,
|
1740 |
+
)
|
1741 |
+
sequence_output = outputs[0]
|
1742 |
+
sequence_output = self.dropout(sequence_output)
|
1743 |
+
logits = self.score(sequence_output)
|
1744 |
+
|
1745 |
+
loss = None
|
1746 |
+
if labels is not None:
|
1747 |
+
loss_fct = CrossEntropyLoss()
|
1748 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1749 |
+
|
1750 |
+
if not return_dict:
|
1751 |
+
output = (logits,) + outputs[2:]
|
1752 |
+
return ((loss,) + output) if loss is not None else output
|
1753 |
+
|
1754 |
+
return TokenClassifierOutput(
|
1755 |
+
loss=loss,
|
1756 |
+
logits=logits,
|
1757 |
+
hidden_states=outputs.hidden_states,
|
1758 |
+
attentions=outputs.attentions,
|
1759 |
+
)
|