See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-0.5B
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
- 57927a5ae99dff3c_train_data.json
ds_type: json
format: custom
path: 57927a5ae99dff3c_train_data.json
type:
field: null
field_input: ''
field_instruction: prompt
field_output: chosen
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 2
flash_attention: null
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: taopanda-2/57668b48-caab-4ee2-ab9a-f362c909f863
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: ./outputs/lora-out/taopanda-2_6083c650-7d77-4583-b47e-9e3b46c46d87
pad_to_sequence_len: null
resume_from_checkpoint: null
sample_packing: false
saves_per_epoch: 1
seed: 53847
sequence_len: 2048
special_tokens: null
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-2_6083c650-7d77-4583-b47e-9e3b46c46d87
wandb_project: subnet56
wandb_runid: taopanda-2_6083c650-7d77-4583-b47e-9e3b46c46d87
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
57668b48-caab-4ee2-ab9a-f362c909f863
This model is a fine-tuned version of unsloth/Qwen2.5-0.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5089
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 53847
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5575 | 0.0126 | 1 | 1.8734 |
1.3784 | 0.5047 | 40 | 1.5089 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.