Edit model card

nucleotide-transformer-500m-1000g_ft_BioS2_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of InstaDeepAI/nucleotide-transformer-500m-1000g on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8664
  • F1 Score: 0.8336
  • Precision: 0.8251
  • Recall: 0.8424
  • Accuracy: 0.8245
  • Auc: 0.9047
  • Prc: 0.9003

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.529 0.0841 500 0.4714 0.8056 0.7472 0.8740 0.7799 0.8519 0.8346
0.4706 0.1683 1000 0.4616 0.7843 0.8182 0.7531 0.7837 0.8702 0.8570
0.4663 0.2524 1500 0.4523 0.8218 0.7276 0.9439 0.7863 0.8782 0.8664
0.4404 0.3366 2000 0.4665 0.8218 0.7254 0.9478 0.7854 0.8827 0.8716
0.4456 0.4207 2500 0.4759 0.8275 0.7481 0.9259 0.7986 0.8924 0.8871
0.4422 0.5049 3000 0.4230 0.8282 0.7707 0.8949 0.8061 0.8861 0.8819
0.4275 0.5890 3500 0.4123 0.8286 0.8132 0.8446 0.8176 0.8946 0.8883
0.4234 0.6732 4000 0.4592 0.8256 0.7345 0.9426 0.7922 0.8961 0.8929
0.4296 0.7573 4500 0.3919 0.8369 0.8014 0.8756 0.8218 0.9019 0.8968
0.4189 0.8415 5000 0.4052 0.8345 0.7781 0.8997 0.8137 0.8981 0.8948
0.4233 0.9256 5500 0.3965 0.8389 0.8040 0.8769 0.8241 0.9024 0.8995
0.4089 1.0098 6000 0.4514 0.8382 0.7861 0.8978 0.8191 0.9044 0.9015
0.3368 1.0939 6500 0.4123 0.8428 0.8032 0.8865 0.8273 0.9067 0.9039
0.3194 1.1781 7000 0.5789 0.8284 0.7382 0.9436 0.7959 0.9006 0.8994
0.3444 1.2622 7500 0.4602 0.8283 0.8278 0.8288 0.8206 0.9007 0.8993
0.3405 1.3463 8000 0.4591 0.8375 0.7816 0.9020 0.8172 0.9008 0.8986
0.335 1.4305 8500 0.5358 0.8430 0.8141 0.8740 0.8300 0.9036 0.9015
0.3228 1.5146 9000 0.6466 0.7698 0.8828 0.6825 0.7869 0.9052 0.9035
0.3409 1.5988 9500 0.5102 0.8326 0.8362 0.8291 0.8260 0.9077 0.9055
0.339 1.6829 10000 0.4643 0.8373 0.8178 0.8578 0.8260 0.9076 0.9054
0.3345 1.7671 10500 0.4526 0.8456 0.7977 0.8997 0.8285 0.9091 0.9062
0.3325 1.8512 11000 0.5876 0.8356 0.7666 0.9181 0.8113 0.9020 0.8999
0.344 1.9354 11500 0.4975 0.8424 0.8131 0.8740 0.8294 0.9081 0.9068
0.3019 2.0195 12000 0.7725 0.8352 0.8406 0.8298 0.8290 0.9123 0.9114
0.2254 2.1037 12500 0.7338 0.7948 0.8647 0.7353 0.8018 0.9051 0.9042
0.2171 2.1878 13000 0.8664 0.8336 0.8251 0.8424 0.8245 0.9047 0.9003

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0
Downloads last month
7
Safetensors
Model size
480M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for tanoManzo/nucleotide-transformer-500m-1000g_ft_BioS2_1kbpHG19_DHSs_H3K27AC

Finetuned
(15)
this model