gena-lm-bert-large-t2t_ft_BioS73_1kbpHG19_DHSs_H3K27AC
This model is a fine-tuned version of AIRI-Institute/gena-lm-bert-large-t2t on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6348
- F1 Score: 0.8584
- Precision: 0.8916
- Recall: 0.8275
- Accuracy: 0.8543
- Auc: 0.9340
- Prc: 0.9335
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
---|---|---|---|---|---|---|---|---|---|
0.5295 | 0.1864 | 500 | 0.4614 | 0.8310 | 0.7748 | 0.8959 | 0.8054 | 0.8913 | 0.8893 |
0.438 | 0.3727 | 1000 | 0.4338 | 0.8425 | 0.8408 | 0.8443 | 0.8315 | 0.8998 | 0.8978 |
0.4083 | 0.5591 | 1500 | 0.3931 | 0.8497 | 0.8354 | 0.8645 | 0.8367 | 0.9098 | 0.9056 |
0.4019 | 0.7454 | 2000 | 0.4137 | 0.8525 | 0.8114 | 0.8980 | 0.8341 | 0.9109 | 0.9072 |
0.3802 | 0.9318 | 2500 | 0.4230 | 0.8567 | 0.8471 | 0.8666 | 0.8453 | 0.9165 | 0.9141 |
0.384 | 1.1182 | 3000 | 0.3671 | 0.8640 | 0.8520 | 0.8764 | 0.8528 | 0.9237 | 0.9212 |
0.3603 | 1.3045 | 3500 | 0.4237 | 0.8604 | 0.8193 | 0.9057 | 0.8431 | 0.9195 | 0.9176 |
0.3552 | 1.4909 | 4000 | 0.3575 | 0.8612 | 0.8736 | 0.8492 | 0.8539 | 0.9256 | 0.9210 |
0.3379 | 1.6772 | 4500 | 0.4773 | 0.8607 | 0.8481 | 0.8736 | 0.8490 | 0.9227 | 0.9205 |
0.3469 | 1.8636 | 5000 | 0.4061 | 0.8714 | 0.8143 | 0.9372 | 0.8524 | 0.9291 | 0.9265 |
0.3193 | 2.0499 | 5500 | 0.4850 | 0.8700 | 0.8733 | 0.8666 | 0.8617 | 0.9308 | 0.9291 |
0.3267 | 2.2363 | 6000 | 0.5780 | 0.8727 | 0.8230 | 0.9288 | 0.8554 | 0.9324 | 0.9309 |
0.3239 | 2.4227 | 6500 | 0.3841 | 0.8715 | 0.8386 | 0.9071 | 0.8572 | 0.9286 | 0.9261 |
0.3193 | 2.6090 | 7000 | 0.4107 | 0.8768 | 0.8837 | 0.8701 | 0.8695 | 0.9350 | 0.9314 |
0.336 | 2.7954 | 7500 | 0.4738 | 0.8435 | 0.8995 | 0.7940 | 0.8427 | 0.9338 | 0.9322 |
0.3059 | 2.9817 | 8000 | 0.3902 | 0.8797 | 0.8390 | 0.9246 | 0.8651 | 0.9358 | 0.9323 |
0.2843 | 3.1681 | 8500 | 0.4350 | 0.8777 | 0.8635 | 0.8925 | 0.8673 | 0.9329 | 0.9291 |
0.2812 | 3.3545 | 9000 | 0.6741 | 0.8709 | 0.7963 | 0.9609 | 0.8479 | 0.9334 | 0.9287 |
0.2912 | 3.5408 | 9500 | 0.5464 | 0.8427 | 0.9014 | 0.7912 | 0.8423 | 0.9351 | 0.9350 |
0.2739 | 3.7272 | 10000 | 0.5261 | 0.8832 | 0.8436 | 0.9267 | 0.8692 | 0.9336 | 0.9291 |
0.2778 | 3.9135 | 10500 | 0.5400 | 0.8702 | 0.8817 | 0.8589 | 0.8632 | 0.9334 | 0.9297 |
0.2641 | 4.0999 | 11000 | 0.5587 | 0.8824 | 0.8504 | 0.9169 | 0.8695 | 0.9338 | 0.9292 |
0.2478 | 4.2862 | 11500 | 0.7934 | 0.8188 | 0.9046 | 0.7479 | 0.8233 | 0.9301 | 0.9257 |
0.2214 | 4.4726 | 12000 | 0.5377 | 0.8825 | 0.8687 | 0.8966 | 0.8725 | 0.9331 | 0.9276 |
0.2662 | 4.6590 | 12500 | 0.6348 | 0.8584 | 0.8916 | 0.8275 | 0.8543 | 0.9340 | 0.9335 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.0
- Downloads last month
- 9
Model tree for tanoManzo/gena-lm-bert-large-t2t_ft_BioS73_1kbpHG19_DHSs_H3K27AC
Base model
AIRI-Institute/gena-lm-bert-large-t2t