🤭 Please refer to https://github.com/svjack/Genshin-Impact-Character-Instruction to get more info
Install
pip install peft transformers bitsandbytes
Run by transformers
- Trained on single round instructions of Genshin Impact
from transformers import TextStreamer, AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat",)
qw_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-7B-Chat", load_in_8bit = True)
qw_model = PeftModel.from_pretrained(qw_model, "svjack/DPO_Genshin_Impact_Inst_ORPO_Qwen1_5_7B_Chat_lora_small")
qw_model = qw_model.eval()
streamer = TextStreamer(tokenizer)
def qwen_hf_predict(messages, qw_model = qw_model,
tokenizer = tokenizer, streamer = streamer,
do_sample = True,
top_p = 0.95,
top_k = 40,
max_new_tokens = 512,
max_input_length = 3500,
temperature = 0.9,
repetition_penalty = 1.0,
device = "cuda"):
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt",
add_generation_prompt=True
)
model_inputs = encodeds.to(device)
generated_ids = qw_model.generate(model_inputs, max_new_tokens=max_new_tokens,
do_sample=do_sample,
streamer = streamer,
top_p = top_p,
top_k = top_k,
temperature = temperature,
repetition_penalty = repetition_penalty,
)
out = tokenizer.batch_decode(generated_ids)[0].split("<|im_start|>assistant")[-1].replace("<|im_end|>", "").strip()
return out
out = qwen_hf_predict([
{
"role": "user",
"content": '''
下面是柯莱的一些基本信息
性别:少女女性
国籍:须弥
身份:化城郭见习巡林员
性格特征:善解人意,乐于助人
这些是一段角色介绍
「乐于助人」、「阳光善良」、「热情洋溢」⋯在化城郭内外稍加了解,就能听到人们对这位见习巡林员的称赞。
只要身体允许,无论学业如何繁忙,柯莱都不会怠慢巡林工作,更不吝于向各色行人伸出饱含热情的援手。
只是如此热诚积极的柯莱,似乎也有着不愿为人所知的过往与心事。
假如在她经常巡逻的林间,发现贴满奇怪字条的树洞,或是类似碎碎念的声响。
无论看到听到了什么,还请善解人意地绕道而行,权当作兰那罗开的小小玩笑。
毕竟有些琐事,是只能说与树洞听的一一至少目前还是。
柯莱如何评价巡林员的工作?
'''
}
],
repetition_penalty = 1.0,
temperature = 0.01,
max_new_tokens=1024
)
print(out)
Output
我热爱巡林员的工作,热爱大自然,热爱生活。
- Has limited chat capabilities
out = qwen_hf_predict([
{
"role": "user",
"content": '''
下面是云堇的一些基本信息
性别:少女女性
国籍:璃月
身份:和裕茶馆、云翰社当家花旦
性格特征:痴迷戏腔
这些是一段角色介绍
「和裕茶馆」历来是璃月人工作之余的一大好去处。
和裕茶馆的生意之所以如此兴隆,一是老板范二爷经营得当,请的茶博士说起书来是一绝。
二是璃月知名的戏社「云翰社」正挂靠在此。云翰社如今的当家兼顶梁柱一名角云堇,有时会来登台开唱。
美味的小吃也好,说书人的故事也好,只要去对地方,随时都能享受。唯独听云堇唱戏的机会,实在不常有。
所以,云堇的戏迷们常常守在和裕茶馆,谈论云堇演唱过的戏,交流各自赏戏的体会。
茶馆里多了不少常客,十个里九个是云堇的戏迷。
范二爷对此很是满意。
一天旅行者到茶馆听戏。
云堇,你听说过荻花洲的传说吗?
'''
},
{
"role": "assistant",
"content": "传说中,荻花洲的芦苇丛中,藏着一位仙人。她用芦苇编织出的乐器,吹奏出的曲调,令人陶醉。"
},
{
"role": "user",
"content": "谈谈你对这个传说的看法。"
},
{
"role": "assistant",
"content": "我倒是觉得,芦苇编成的乐器…唔…听起来有点奇怪呢。"
},
{
"role": "user",
"content": "戏班中有哪些丝竹?"
}
],
repetition_penalty = 1.1,
temperature = 0.01,
max_new_tokens=1024
)
print(out)
Output
琴、筝、琵琶、笛子、锣鼓…嗯,还有笙。。
train_2024-05-18-08-31-08
This model is a fine-tuned version of Qwen/Qwen1.5-7B-Chat on the dpo_genshin_impact dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3.0
- mixed_precision_training: Native AMP
Training results
Framework versions
- PEFT 0.11.1
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for svjack/DPO_Genshin_Impact_Inst_ORPO_Qwen1_5_7B_Chat_lora_small
Base model
Qwen/Qwen1.5-7B-Chat