BERT_NER_Ep6_PAD_50-finetuned-ner
This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3741
- Precision: 0.6510
- Recall: 0.7399
- F1: 0.6926
- Accuracy: 0.9020
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 288 | 0.3648 | 0.5949 | 0.5907 | 0.5928 | 0.8792 |
0.4815 | 2.0 | 576 | 0.3400 | 0.5860 | 0.7390 | 0.6536 | 0.8867 |
0.4815 | 3.0 | 864 | 0.3217 | 0.6404 | 0.7129 | 0.6747 | 0.8992 |
0.2206 | 4.0 | 1152 | 0.3430 | 0.6413 | 0.7321 | 0.6837 | 0.8995 |
0.2206 | 5.0 | 1440 | 0.3560 | 0.6464 | 0.7377 | 0.6890 | 0.9010 |
0.1487 | 6.0 | 1728 | 0.3741 | 0.6510 | 0.7399 | 0.6926 | 0.9020 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.